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FOREWORD

Design and analysis of the AiResearch QCGAT mixer exhaust

system was conducted at the AiResearch Engineering facilities at

Phoenix, Arizona. Data reduction of performance and acoustical

measurements were also conducted at the AiResearch facilities.

The testing performed on the 35-percent scale model exhaust

nozzles for the QCGAT engine program was conducted at the FluiDyne

Engineering Corporation's facilities at the F1uibyne Medicine Lake

Aerodynamic Laboratory, Minneapolis, Minnesota.,
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SLCTIOII I

SUMARY

1. 0 SUPUTARY

1.1 Objectives

The objective of the NASA QCGAT (duiet Clean General Aviation
Turbofan) engine mixer-nozzle exhaust system scale-model program
was to develop a l;ilxer compound nozzle exhaust system to meet the
proposed performance and exhaust jet-noise goals for the AiResearch
QCGAT L'ngin(..

1.2 Scope

This report covers the period from the preliminary optimiza-
tion to the engine cyclo matching of the selected full-scale
e;chaust system. A proliiminary mixer nozzle optimization computer
program, based c111 state-of-the-art techniques, defined the initial
mixer confi,luration geoluotry. The initial aerodynamic contours of
the mi ;cer sand fan duct were dotormined with a radial-equilibrium-
flow analysis program. The mixer lobe designs were analyzed with
an advanced 3-D vis(ous compressible flow program. Several lobe
modifications wart., studied  b aseci on the results of the flow analy-
sis. The configurations ^ ,jero also analyzed in terms of relative
litlxing e fficiency, using a turbulent mixing-model program. Based
on the flow analysis, three mixer, compound configurations and a
standard compound nozzle were solected for scale-model testing.
Three !nixin(j duct length variations were also selected. Model
hardware was fabricated and tested. Performance and acoustic data
were rc^corci<^d Ott t?e sea-level static takeoff and cruise design
poilit conditions. A final mixer exhaust system was selected and
the scale-model mixer systel;i was tested at selected off-design
conditions in order- to generate the performance maps. The per-
for;,ianc;e maps were then used in an en);i.ne cycle sizing analysis to
obtain the optimum aa_oas for the overall flight regime.

1.3 Test Results

The program goals were exceeded with a cruise total specific
fuel consumption (TSFC) r(:-duction of 3.2 percent; a sea level
static takeoff turbine inlet temperature reduction of 11.7°K
('1.1°F) ; and a projected f.lyovor jet noise- reduction of 5.1 FPIIdb.
Performance results in torms of thrust coefficient and mixing
efficiency are sunamarizod in Tablo 1-1. Proposed performance goals
were e;cceedod at both the sea-level-static point and the cruise
design point. Mixer nozzle pressure losses derived from the cold-
flow testing yielded the same order of ranking as predicted by the
3-D vi:3cous analysis, but were lower in absolute level than the
predicted values.

_ -	 _



The tested performance of the short parallel mixer compound
exhaust system (Configuration II) results in an increase in engine
net thrust at cruise of 5.4 percent and an improvement in TSFC of
5.4 ^rcent, relative to the reference coannular nozzle system,
whca sized to hold the reference nozzle cruise cycle match.

Far-field acoustic measurements were made during tl:e hot-
flow model testing. A summary of the measured noise levels of
the tested configurations is presented in Table 1-2. Configuration
II, the short parallel mixer compound exhaust system with the long
mixing duct, had the lowest noise level at both the sea-level-
static takeoff and cruise-design-point pressure ratio settings.
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TABLE 1-2. SUMMARY OF %JCGAT mixrR NOZZLE
ACOUSTIC TEST RESULTS.

Maximum Tone Corrected Perceived Noise Level*
(PNdBt)

1.4 Nozzle Press. Ratio 2.4 Nozzle Press. Ratio

Delta Relative Delta Relative
Nozzle to to

Configuration Absolute , Config.	 I Absolute Config. I

I	 Standard
Compound 136.8 0 155.7 0

II	 Short
Parallel 132.7 -4.1 152.0 -3.7

III	 Long
Parallel 135.0 -1.0 153.7 -2.0

IV	 Long
Radial 137.6 0.8 153.5 -2.2

V	 Short
Parallel 134.2 -2.6 152.4 -3.3

VI	 Short
Parallel 134.7 -2.1 152.,7 -3.0

*As measured a
( 8 ft)  radius
radians (15,
line.

t F1uiDyne Test Facility for microphone array 2.44m
from source, at 0.26, 0.35, 0.52, 0.70, 0.37, 0.,4

20, 30, 40, 50, and 60 degrees) from exhaust center-

4



SECTION II

INTRODUCTION

2.0 INTRODUCTION

2.1 Background

The NASA QCGAT (Quiet Clean General Aviation Turbofan) engine
program seeks to demonstrate that large turbofan design concepts
can be successfully applied to turbofan engines with sea-level
thrust below 22.241 kN (5000 pounds). The program goals are to
improve the environmental characteristics of civil aircraft by
alleviating noise as well as pollution near airports, thereby
assisting in reducing current growth restraints to civil aviation,
and also providing engines with reduced fuel consumption.

This program requires the design of a full-scale co-annular
reference-exhaust nozzle and mixer-compound exhaust nozzle syste:r>.
Scale-model testing of several mixer design candidates has been
accomplished to meet the program requirement.

2.2 Scope

!fixer designs for cold- and hot-model testing were accom-
plished with extensive use of computer programs for analysis of
the mixer-compound nozzle system. A major effort of the QCGAT
program was the analytical design approach utilized in selecting
and analyzing the mixer configurations to be tested. Also
included in the design effort and analysis was the fan-bypass
duct, the reference co-annular exhaust nozzle, and the baseline
compound nozzle.

2.3 Purpose

This report covers the analytical techniques used in the
design effort in producing the test models as well as presentints
the data obtained from the tests to compare with the predicted
results.

The test results are then used with the design techniques to
predict the full-scale engine performance and noise levels.

2.4 Test Report

Included as an attachment to this report is the F1uiDyne
Engineering Corporation Report No. 1123 titled "Hot/Cold Flow
Model `rests to Determine Static Performance of 35% Scale QCGAT
Exhaust Nozzles".

This research was conducted for AiR ,^aearch under subcontract
as approved by NASA for accomplishm(^tt of the model testing.

5/6



SECTION III

ANALYSIS AND DESIGN

r

3.0 ANALYSIS AND DESIGN

3.1 Design Approach

The QCGAT mixer-exhaust system design analysis utilized the
latest analytical technology. The exhaust system was sized and
performance predictions were made with an advanced version of the
compound flow analysis computer program. The mixer-lobe geometry
was initially selected with an empirical parametric optimization
analysis and the preliminary end-wall contours were analyzed with
conventional radial-equilibrium flow analysis. The mixer-lobe
design was then refined with use of an analysis method which
solves the 3-dimensional compressible Navier-Stokss equations.
Various contour changes were then analyzed to reduce the end-wall
curvature, and reduce losses due to 3-dimensional diffusion and
secondary flows. The impact of .lobe design and mixing-duct con-
tour on the mixing process was evaluated with a three-dimensional
viscous recirculating-flow mixing analysis.

The reference coannular exhaust system was scaled from the
AiKesearch Model. TFE731-3 engine reference nozzles. The nozzles
were analyzed with a conventional radial-equilibrium-flow solution
and boundary-layer calculations. The flow in the bypass duct and
standard compound-core duct was analyzed with standard boundary
layer and radial-equili::.rium techniques.

3.2 Preliminnau Prediction of the QCGAT Mixer-Compound-Exhaust
System Performance and O -Design Matc ing CiaracterisTI-cs

Over the past several years, compound-flow analysis has been
developed into an industry-accepted performance prediction pro-
cedure (ref. 1, 2, and 3). AiResearch has extended the prediction
procedures for coannular-unmixed, partially-mixed, or forced-mixing
exhaust systems. The semi-empirical analysis is based on a
fundamental understanding of the flow processes and proper loss-
bookkeeping procedures. The nomenclature used in the analysis is
summarized in Figure , .l . The exhaust system is broken into
specific calculation stations, i.e.,

o	 Rating stations
o	 Bypass and core ducts
o	 Flow splitter plane
o	 .Inlet or mixing plane
o	 Mixing duct
o	 Minimum plane
o	 Exit plane

.wLNG PAGE BLANK NOT F'ILA4&0 	 7
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At each prime calculation station, flow coefficients are
assigned as in a normal, separate, flow exhaust system. However,
the splitter flow coefficients are assigned in a unique manner
(see Figures 3-2 and 3-3), i.e., the splitter flow coefficient is
defined as a function of the ratio of the total pressures. This
flow coefficient correlation method (see Figure 3-3) has proved
successful for coannular, partially mixed, and fully mixed systems.

A total pressure-loss bookkeeping procedure was established
which would accommodate the losses of the various types of mixed
flow exhaust systeras (Figure 3-9). The losses are assigned inde-
pendently to each gas stream and have been separated such that the
local total pressure is used at each of the calculation stations.

The solution boundary conditions are summarized in Figure 3-5.
The Kutta condition, or static pressure balance, is applied where
the gas streams merge, i.e., at the splitter or inlet calculation
station. The compound-choking criteria, developed by Bernstein,
et al (ref. 1) is applied at the exit and minimum calculation
stations.

The compound-flow analysis procedure is used for system
design point sizing as well as predicting exhaust system component
performance maps for new systems. The flow coefficients and total
pressure losses for geometrically similar systems may be used to
successfully predict the performance and matching characteristics
of a new exhaust system. Table 3-1 presents a comparison between
analytically predicted results and engine test data for a TFE731
engine compound-nozzle system (ref. 9). The agreement between
predicted and tested results is excellent. Small discrepancies
still eisist in estimating the engine back pressure and exit area.
However, the deviations are well within those experienced with
some standard coannular-exhaust systems when first run on the
engine.

The AiResearch compound-flow analysis procedure has been
used to size and predict the performance of the QCGAT-compound
and mixer-compound exhaust systems,

3.2.1 Pressure Loss Estimates

The QCGAT duct pressure loss estimates used in the prelim-
inary design optimization are presented in Table 3-2. The loss
estimates are based on the AiResearch compound-nozzle tests and
the 1976 IR&D mixer (see Figure 3-6) cold-flow model test data
(ref. 6). The pressure loss of a lubed mixer duct cannot be esti-
mated from friction losses alone, such as:

T^

	

T	 ; 
r42

	

FIT	2 	 D h
dL

0

(1)
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Figure 3-4. Compound Flow Analysis Total Pressure Losses.
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AR - 2.39

PENETRATION RATIO	 PEN Y 0.72

SPACING RATIO	 SR = 0.78

MIXING DUCT LENGTH RATIO	 X/D = 0.80

Figure 3-6. AiResearch 1976 IR&D Mixer Compound Core.
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TABLE 3-1. CYCLE MATCH CHANGES DUE TO A COMPOUND NOZZLE
RELATIVE TO A COANNULAR AT SLS TAKEOFF THRUST.

Parameter
Analytical
Predictions

Enyi.ne
Test

AN1/N l -1.78 -1.98

AN 2/N 2 -0.28 -0.08

'AT 4.1 +1.8 0K(+3 0F) +4.8 0K(+8 0F)

,1PT5.2/PT5.2
+0.68 +2.88

APT14.0/PT14.0 0.0% 0.08

ATSFC/TSFC -1.58 -0.68

NOTES:

	

N 1	- low-rotor speed

	

N 2	- high-rotor speed

T4.1 - turbine inlet total temperature

PT5.2	 - core-nozzle supply, total pressure

P
T14.0 - bypass-nozzle supply, total pressure

	

TSFC	 - thrust specific fuel consumption

TABLE 3-2. QCGAT MIXER-COMPOUND EXHAUST SYSTEM
PRESSURE LOSS ESTIMATES.

Flight Condition

AP

PT Core

AP

P`r Bypass

AP

PT Mix

Design Point
t4 =	 0. 8
Alt = 12,192m

(40K it) 0.0248 0.0297 0.0044

S.L.S.	 Takeoff
298°K	 (77°F)	 Day 0.0161 0.0241 0.0031
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In order to account for the secondary flow losses and other
unknown losses, a ratio of the test-data loss to the analytical
friction loss was formed:

AP/P T Test
Data

1.11 R =	 X91'
	

(2)

PT Analytical
Friction

The loss ratio for the 1976 IR&D mixer (see Figure 3 -6) was three
to one (KR = 3.0). Thus, the preliminary QCGAT mixer analytical -
loss estimate was calculated using the standard friction loss and
a loss ratio of throe (KR = 3.0). In the off-design calculations,
the design point loss is scaled with the corrected flow i.e.,

2

1 
1' 1:
T

The QCGAT mixes; off-design loss scalars are presented in
Table 3-3.

The mixiny-duct loss estimate is comprised of two basic
elements; a mixing-duot-shroud friction loss, and an empirical
flow mixing loss correlation. The mixing loss is computed by
simultaneous solution of the momentum and continuity equations
for a presumed thermal-mix.iny ctificiency. The mixing-duct
shroud-friction loss is computed from standard-duct friction loss
analysis.

3.2.2 QCGAT Flow Coeffi c ients

The design point "ind sea-level-static flow coefficient
estimates for the (?Ct,AT exhaust s}stem preliminary design are
sununarized in `fable 3-4. The exhaust system exit-flow coeffi-
cients used in the QCGAT preliminary design were obtained from
scale model cold-flow rig test data (see Figure 3-7) . Mixer-
compound systems have flow coefficients which are lower than
standard compound nozzles. however, the characteristic shape is
the same as shown in Figure 3-7. Comparison of the compound-flow
analysis to the Model ATF3 TurbofaIl en Lfine hot-flow mixer test
(lata (ref. 5) has verified that the exit flow-coefficient depend-
ence on thermal mixlnL can be adecjuately accounted for by proper
mixirni lossaccounting. 'Thus the cold-exit-flow coefficients are
used for both hot-and cold-flow predictions.

(3)
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TABLE 3-3. QCGAT MIXER-COMPOUND EXHAUST SYSTEM
OFF-•DESIGN LOSS SCALARS.

PP = K f _
	

/ 2
T

WK

Loss ,
s2/kg `' (sec 2/lb 2 ) kg/s (lbs/sec)

Core 5.54 x 10-5 (1.14 x	 10-5 ) 20.2 (44.5)

Bypass 10.70 x 10
-6

(2.20 x	 10 6 ) 41.8

Mixing 21.39 x 10 -7 (4.40 x	 10-7 ) 62.6 (138.0)Duct 

TABLE 3-4. QCGAT EXHAUST SYSTEM PERFORMANCE
INFERNAL FLOW COEFFICIENTS.

Flight Condition CDS1 CD S2 CD El CD E2

Design Point 0.9330 0.9355 0.9540 0.9547
M = 0.8 Alt = 12,192m(40K ft)

S.L.S.	 Takeoff 0.9300 0.9350 0.9340 0.9350
298°K	 (77°F)	 Day

16
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A unique splitter-plane flow- coefficient correlation has
been developed. The standard flow-coefficient definition is
still used, i.e.,

CD - W actual /Wideal
	 (4)

However, the ideal flow is based on the local static pressure at
the splitter plane. A single value curve results when the
splitter flow coefficients are correlated against the total pressure
split. The AiResearch 1976 IR&D mixer flow coefficients shown in
Figure 3-8 were used for the QCGAT preliminary design.

3.2.3 Exhaust System Area Sizing

Optimizing the cycle performance at the cruise and SLS oper-
ating conditions was the main design considc-ration for selecting
the QCGAT exhaust system areas. The engine cycle was initially
optimized with a separate-flow coannular-exhaust system, then a
mixer-compound exhaust system was sized to hold the same cruise
match. Cycle off-design studies were then conducted and the
exhaust system areas were modified, thus trading design-point per-
formance for better off-design performance.

3.2.3.1 Minimum and Exit Area Sizing

Design-point flow conditions (W, PT , TT ) were specified for
each stream in addition to the appropriate pressure losses and
thermal mixing efficiency. Only the exit boundary condition is
applied while ',;he exit area and/or minimum area are varied. A
total-pressure deviation function is plotted versus exit and/or
minimum area as shown in Figure 3-9. The cycle match area cor-
responds to a deviation function of zero. The QCGAT design-point
match area is 2603.2 cm 2 (403.5 in 2 ) while the SLS-takeoff match
point area is 2649.0 cm 2 (410.6 in 2 ). (Note that later cycle
optimization analysis set the exit area at 2619.3 cm 2 (406 in2)
as discussed in Section 3.2.5). If the design point is compound
choked, then the exit area may be increased to either optimize
thrust or to trade off the design-point thrust for a closer com-
pound unchoked secondary design-point cycle match. However, the
exit and minimum plane areas were set equal for the QCGAT design.

3.2.3.2 Inlet and Mixing Plane Areas

Once the minimum and exit plane areas were sized, an inlet
area study was conducted. Again, only the exit boundary condition
was applied while the exit area was held constant and the inlet
area was varied. The performance versus inlet area study is
presented in Figure 3-10. The inlet area sizing criteria were
based on maximizing internal thrust while remaining within. a
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practical nacelle seize for drag considerations. Characteristi-
cally, the thrust-coefficient curves level off with increasing
inlet area. Therefore, the evident trade-off guideline of size
versus performance is the point where the internal performance
begins to level off. Above that point, external drag would
become dominant. Therefore, a nozzle inlet area of 4516.1 cm2
(700 in 2 ) appeared to be the optimum choice for QCGAT.

The mixing loss variation with inlet area as shown in
Figure 3-10, also indicates that the 4516.1 cm^ (700 in 2 ) is a
good choice. The rate of change of the mixing-duct inlet Mach
numbers also appears to be leveling off at 4516.1 cm 2 (700 in2)
as shown in Figure 3-11. It is important to minimize the inlet
Mach numbers since they directly set the loss levels, mixing
rate, and mixer-lip noise generation. Examination of the required
split.ter area, Figure 3-11, indicates that both the sea level and
cruise design point nozzle demand areas could be held equal if
the inlet area was set at 403?.3 cm2 (625 in 2 ). however,
4032.3 cm 2 (625 in 2 ) would result in higher Mach numbers with
increased losses and increased mixer generated noise. Thus, the
sea level static takeoff areas were allowed to deviate. A final
area iteration was conducted in conjunction with the engine cycle
deck to optimize the engine design and off-design performance as
discussed in Section 3.2.5.

3.2.4 Thrust Coefficient Prediction

Thrust coe fficients are predicted using compound-flow
analysis. Empirical correlations for pressure losses are required
as defined previously in Section 3.2.2. In addition, a throat-
efficiency correlation is also required for the calculations. The
throat-efficiency relationship was developed from boundary layer
theory and is expressed as:

C (mv+PA) exit 	 P.Aexit	 (5)
C F 	c 	 F

ID

C S = 1.0 - 0.12088 (DIiE) -0.5 
(Re ) -0.211 

(D)

oL .789 (+^_ l
r12\/1

-0.632
D
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The thrust gain due to thermal mixing is calculated from a
solution of the continuity and momentum equations. Based on the
Frost-nixing efficiency correlation, as discussed later in
Section 3.3.2, a mixing efficiency of 0.75 was chosen for the
QCGAT predictions. This level appears to be the maximum obtain-
able for realistic geometries. The predicted thrust coefficients
at the cruise design point and at sea level static takeoff as a
function of nmix are shown in Figure 3-12. With an nmix of 0.75,
the predicted cruise design point thrust coefficient is 1.001
and the sea-level value is 0.974. Since the design-point thrust
coefficient exceeds the proposal target value of 0.994, and since
this level had not been previously demonstrated by AiResearch; the
design-point thrust coefficient in the cycle deck was maintained
at 0.994.

3.2.5 Performance and Matching Characteristic Ma ps

With the exhaust system geometry and loss characteristics
defined, the off-design performance and matching characteristics
were computed. Component maps can I>e generated provided the tem-
peratures, mixing efficiency, and fuel-air ratios are known.
Currently, constant values based on an average from the flight
mission study are used. The averaged values are as follows:

TTl = 758.4 0 I: (1365.2 0R)

TT2 = 306.6 0 1' (551.90R)

nmix _
	 0.75

cruise design-point condition were
group where off-design engine match
Based on the off-desi gn engine

match studies, the exhaust system exit area was resized to
2619.3 cm 2 (406.0 in 2 ). The performance maps were then scaled to
the revised exit area using the compound-flow analysis scaling
routine.

The predicted QCGAT exhaust system matching-characteristic
maps are presented in Figure 3-13 as core-corrected flaw and
bypass-corrected flow versus core-pressure ratio for lines of
constant bY;?ass-pressure ratio. The thrust-coefficient map is
presented in Figure 3-14 as thrust coefficient versus core-pres-
sure ratio for lines of constant bypass-pressure ratio.

Initial maps sized to tho
transmitted to the performance
characteristics were studied.
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3.3 Preliminary Mixer Desi?r, Selection and Optimization

A preliminary mixer design optimization computer p:-ogram was
developed to perform preliminary parametric studies of miter
exhaust-system geometry effects on overall performance. The pro-
gram was based on state-of-the-art techniques involving empirical
and semi-empirical equations for pressure loss, thermal mixing,
and peak velocity decay. Mixer geometry parameters studied are
defined in Figure 3-15.

3.3.1 Mixer Lobe Total Pressure Loss Correlations

S(rveral sources of pressure loss were included in the
analysis: an empirical mixer ,loss factor which is a function of
the mixer equivalent hydraulic diameter, the turning loss through
the mixer lobes, the flow-mixing loss for an assumed nmix, and
the skin friction loss for the mixing duct and pl::q.

The mixer-loss factor is based on empirical studies conducted
by Postlewaite (ref. 7) and by Frost (ref. 8). The mixer-loss fac-
tor can be correlated as a function of the equivalent hydraulic
diameter as shown in Figure 3-16. The AiResearch data (ref. 6)
falls on the data line of Postlewaite, therefore Postlewaite's
data was used in the analysis. The mixer-loss-factor is defined
as the ratio of the mixer-nozzle loss to the analytical loss of a
circular convergent nozzle of equivalent length and exit area.
The pressure loss of the convergent nozzle is calculated in the
analysis by using standard skin friction calculations, i.e.,

(AP/P = x`1246 L/D). This loss correlation provides losses

consistent with the loss ratio (KR) discussed in Section 3.2.1.

A turning loss was included in the analysis since a varying
plug-crown radius requires various degrees of core-flow ;turning
relative to the base circular nozzle. The bypass stream has the
flexibility of designing large radius ratio turns; therefore,
bypass turning loss was considered negligible. The degree of
turning was based on the difference between the mean-exit radius
and the mean-inlet radius of an equivalent-area-annulus duct.
The offset-loss factor shown in Figure 3-17, is a function of the
radius change divided by the mixer length. A loss correlation,
Curve A, was obtained from diffuser-duct offset data, and was
initially used in the rnalysis. Since the turning lc;:-ses were
a significant loss in the analysis, an additional check on turnino
losses was made. A second loss estimate, Curve 13, was derived
from circular duct bend losses and the diffusion loss incurred in
turning flows. Use of Curve B had little impact on the optimiza-
tion results.
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The centerbody plug and mixing duct friction losses are
calculated in the analysis using the standard friction-loss
calculations. The mixing-duct and centerbody-plug lengths are
calculated in the program as a function of other parameters with
an assumed plug angle of 0.26 radians (15°).

3.3.2 Criteria for Mixing Duct Length Selection

Mixing of streams with different velocities occurs within two
distinctive zones. The mixing process is described in Figure 3-13.
Zone I is single element decay of the high-velocity streams and
the velocity decay is fairly rapid. Zone II is called the
coalescing core region and decay becomes linear and much slower
than in Zone I. The peal: velocity decay term is defined as the
local peak velocity difference relative to the initial (mixing
plane) velocity difference of the two flora streams. The velocity
decay rate can be used to establish the required mixing duct
length. Because of the slow velocity decay of Zone II, the
practical mixing duct length is set at the end of Zone I which is
represented by the characteristic length Z  (ref. 9, 10, and 11).

The mixing duct characteristic length, ZC , is defined as:

Zc = 12[1+1/4 (s/w) 2/3J (s/w) 1/3 f 1 (DIIE' TR) f 2 ( R/s, AR, VR) f 3 (VR) (6)

where:	 s = ( s l + s 2 )/2	 w = ( wl + w 2 )/2	 VR = VB/VC

R 1 + h/2
R/s =	

s

-1

f (D ,TR) =	 1 +1 II1;	 1+ 5 (1 - 1 /TR) 8

-1

f 2 (R,'s ,AR,VR) = [1 + 0.33 * R/s * TR 3 * R2^

-1.25
f 3 (VR) = (1 - VR)
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For calculating the thermal mixing characteristic length, the
average spacing ratio was selected. However, for a conservative
estimate of the peak-velocity-decay characteristic length, the
maximum spacing ratio at the tip of the lobes (S1/W2) was used.
The mixing duct length is determined from the characteristic
length as defined by the following equation:

X = ZC 1/b * C D * 4 7r A
Lobe * 1+rlcore	

(7)

1
where: b = 1 +--

3 [ (r— 21R) - 1]

The peak velocity decay is a function of the mixing length
characteristic, lobe geometry, and velocity ratio as defined
below:

(V - V B )/(VC - V B ) = (1 + (0.15 ZV)a]
	 (8)

where:	 a = 4 ( 2 - 1/TR) (1 + 8/3 (1/D HE - 1) ]

ZV = Z  * f 4 (VR)

f 4 (VR) = (1 - VR) 1.25 / (.1 + VR)

S = s 2	w = w2

3.3.3 Frost Mixing Correlation

The analysis used a semi-empirical thermal mixing correlation
derived by Frost (ref. 8) which i g shown in Figure 3-19. The
mixing effectiveness is correlated as a function of mixer and
mixing duct geometry by the interface function, f = /C--D (CP/D)(X/D).
From the definition of equivalent hydraulic diameter the function
can be redefined in the following manner:
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since DHE
r4- 7rr A = _ L

CP	 CP

f = D (CP/D) (X/D)
	

(9)

D_D CP nDE
ii D

0p^'- DD	 trD ( X)D

r	 lf =	
DD	 D1	 1D1HE

Since DE/D varies with bypass ratio, the equivalent hydraulic
diameter (D IIE ), or the duct length (X), may be altered to maintain
the same degree of mixing efficiency. It follows that an increase
in the mixing efficiency must be accompanied by a decrease in the
equivalent hydraulic diameter or the mixing duct length must
increase.

3.3.4 Parametric Design Studies

The various losses, mixing efficiency, mixing duct length
calculations, and peak-velocity-decay predictions were used in a
parametric study to optimize the QCGAT mixer design. The follow-
ing parameters were varied:

i1	 Number of Lobes	 8, 9, 10, 12, 16
TR	 Lobe Taper Ratio	 1, 2, 3, 4
AR ti Lobe Aspect Ratio 	 1, 2, 3, 4, 6

The exhaust system areas used in the study were determined from
the compound-flow analysis and were held constant. Penetration
ratio was computed as a function of the above parameters and the
mixing plane areas. It was assumed that each configuration would
maintain the cycle match point; thus,the thrust coefficient
changes are directly related to the .losses as shown in Table 3-5.

The initial parametric plots are shown in Figures 3-20, 3-21,
and 3-22 for aspect ratios of 2, 3, and 4 respectively. Each plot
,resents the thrust coefficient change as a function of lobe pene-
tration for varying taper ratio and a given lobe number. All
parameters are plotted versus a delta gross-thrust coefficient.
The results clearly indicate that a taper ratio of 1.0 (parallel
core lobe walls) is, in all cases, the optimum choice for the ranges
of parameters studied. More detailed results for a taper ratio of
1.0 are presented in Figures 3-23, 3-24, and 3-25 for lobe
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TABLE 3-5. QCGAT CRUISE DESIGN POINT THRUST SENSITIVITIES.

Core pressure loss
sensitivity

AC 	 =
core

0.50	 (OP/PT	+ AP/PT	)
core	 plug

Bypass pressure loss AC = 0.49	 (AP/PT	+ AP/PT	)
sensitivity bypass bypas s	 mix

Fefficiency
xiny WF= 0.0235	 mix

 ensitivity total
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numbers of 9, 10, and 12, respectively. The Peak thrust coeffi-
cient for the taper ratio of 1.0 (Figures 3-20, 3-21, and 3-22)
is plotted versus aspect ratio. The other results presented are:
penetration ratio, mixing efficiency, velocity decay, and mixing
length. In Figure 3-26 the results from Figures 3-23, 3-24, and
3-25, which were considered to be within practical application
limits, are cross-plotted versus lobe number for lines of
constant aspect ratio. One of the design requirements was to
achieve 75-percent thermal mixing, shown by a dashed line on
the mixing efficiency plot. The points of intersection with
the lines of constant aspect ratio then determined the design
length requirement and the resultant thrust and velocity parameters
as shown by the dashed lines on the other plots.

3.3.5 Preliminary Mixer Configuration Selection

Referring back to Figure 3-26 the dashed lines represent a
thermal mixing efficiency of 0.75. The selected design took into
considerat4on performance, weight, length, and acoustics. Delta
thrust coefficient for a 0.75 nmix was fairly constant within the
aspect ratio range of 2 to 4, which meant the length and velocity
decay would determine the selected design. As shown by the mixing
length plot (Figure 3-26), mixing length decreases with increasing
aspect ratio for a given nmix• Peak velocity at the mixing duct
exit also decreases with increasing aspect ratiofor constant nmix•
For minimum noise the peal: velocity ratio should be minimized.
For minimum weight the mixing duct length should be minimized.
Thus, an aspect ratio of 3.5 and lobe number of 12 was chosen for
the preliminary design. The ;nigher aspect ratio of 4 was not
chosen because it was felt the lobes would be difficult to
fill and thus, higher than predicted losses would result.

A summary of the selected preliminary design parameters are
compared to the proposal values in Table 3-6.

3.3.6 Gas Path Preliminary Design

A radial-equilibrium flow analysis was used to establish the
preliminary gas path design for the mixer compound exhaust system.
This analysis was also used to establish the final gas path
controls for the bypass duct, reference nozzles, and baseline
compound nozzles. The computerized analysis solves the equili-
brium equations in an axisymmetrical flow field. The boundary-
layer blockage is estimated simultaneously with the tree-stream
flow-field calculation based on an empirical Mach-number-dependent
correlation. Further flow solution details are presented in the
following sections.
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TABLE 3-6. DESIGN PARAMETER SELECTION.

Design Parameter
Proposal
Design

Preliminary
Design

Number of lobes	 N 9 12

Taper ratio	 TR 2.0 1.0

Aspect ratio	 AR 2.8 3,5

Penetration ratio	 PEN 0.84 0.77

Spacing ratio	 SR 1.00 1.05

Mixing duct
length ratio	 X/D 0.70 0.75
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3.3.6.1 Bvaass Duct Radial Equilibrium Flow Analvsis

A preliminary loss-optimization analysis of the bypass duct
indicated that the diffusion loss was predominant and that minimum
diffusion would yield minimum overall loss. The duct diffuser was
designed to diffuse the flow to an average Mach number of 0.362
at the end of the oil cooler. A constant-area passage was main-
tained from oil-cooler exit to nozzle inlet. The diffuser area
ratio (AR) of 1.32 and the .",ength ratio of 3.82 are quite
conservative, as shown in Figure 3-27. The estimated duct loss
including struts is 1.5 percent with an additional 0.5-percent
total-pressure loss for the air/oil cooler (ref. 12). The
final design flow path and calculated Mach numbers are presented
in Figure 3--28.

3.3.6.2 Reference Nozzle

The QCGAT reference performance nozzle was designed along
the same guidelines as the 731 reference nozzles. T^e exit area
of 794.1 cm 2 (123.08 in ll ) for the core and 1775.9 cm (275.28 in 5)
for the bypass are required to maintain the QCGAT cycle match.
The core-nozzle-throat angle was set at 0.09 radian (5°) and was
faired into the core customer connect flange at the engine station
237.37 as shown in Figure 3-29. A 0.16-radian (9°) bypass nozzle
hub angle was chosen to blend tangent to the bypass duct contour
at engine station 241.0. The bypass exit plane axial location was
determined by a spacing ratio requirement of 0.25 based on Garrett
reference nozzle experience where spacing ratio is defined by:

SR = L/2R
	

(10)

where	 L = Axial distance between core exit and bypass exit
R = Core exit radius

The bypass exit radius was set based on the required bypass
nozzle area being perpendicular to the core nozzle. The radial-
equilibrium flow analysis resulted in Mach number and boundary
layer thickness distributions very similar to the existingTFE731-3
reference nozzles. Since the geometries are very similar and the
flow analysis does not indicate any significant flow differences,
the QCGAT reference nozzles will produce the performance presented
in Figure 3-30.

3.3.6.3 baseline Compound Nozzle Design

The compound nozzle was designed such that the same centerbody
and mixing duct could be used for the baseline compound nozzle and
the mixer compound nozzle. The first step in setting the gas path
was to lay out a preliminary turbine diffuser and centerbody. The
diffusion rate was established to provide maximum diffusion without

47

m



► (p ;^ 0.02

(INLET BLOCKAGE NO.)
2.0

Q^Q

	

1.0	 .6

W

Q
Qd
O
F-	 0.5
Q
	

.4
cc

r I

BYPASS DUCT
DESIGN POINT

I

1
1	 2	 6	 10

DIFFUSER LENGTH RATIO L/AR1

CA = LOCUS OF MAXIMUM PRESSURE RECOVERY COEFFICIENT AT
PRESCRIBED NON-DIMENSIONAL LENGTH.

C P' • = LOCUS OF MAXIMUM PRESSURE RECOVERY COEFFICIENT
AT PRESCRIBED AREA RATIO.

Figure 3-27. QCGAT Bypass Duct Diffuser.

QW
Q
x
Wy
LL
U.

C

/I

48



S

st

V

N
1

M
X
W

cc
O

C-4 Q

H

N Q
LL

N 0
U.

W

N Q

f,0
J
Q

. NX
•- Q

.o

z

N
N
b

N

N a)

O
.^ 2

H04

N b
aa) ro

0

U

Q 4J

U :3
Of

00N
1

(`'1

Q)

w
v

O

X
W

it

51̂

o
uu u

O =
c

o ^ C
11 C

11

11
m

0
N

f
u^

^
r

M
^ 0

M U
O

'

II I	 ^

cI L

O

O
^

W
rn

Y ^

F-
Y=

O J 1
^S W

^ II
o
!I

^

O Lo	 M	 N

y	 (wo)-smada

z
U. 00 w d N O co O d N

('No-smava

a-..a..

V

N
I

X
W

O
Q

H
•z

Q
U.

w
W
W

zQ

J
Q
X
Q

n
V

D

49

S

F

jj



!°1

Q ^

W

N
N
O
2

N
U
N
O
W
O
a

N
I
M

$4

0

IT

W

50



W

V	 1.00_
LL

W	 0.98
V

0.98
LL
v

=	 0.94

LU 0.92
N
N
	 0.90

z	 1.0

BYPASS

CORE

1.4	 1.8	 2.2	 2.6	 3.0	 3.4	 3.8

NOZZLE PRESSURE RATIO — PT/Pco

1.
H
Z
W	 0.
v
LL	 0.
ul
U	 0.
OUJ
LL	 0.
W
J
N	 0.
O
Z

DO

98

96

94 BYPASS

92

90 CORE

U.00

1.0	 1.4	 1.8	 2.2	 2.6	 3.0
NOZZLE PRESSURE RATIO — PT/PSBASE

Figure 3-30. QCGAT Reference Nozzle Predicted
Performance Characteristics.

3.4	 3.8

51



flow separation following the guidelines established in i.e. 13.
The radial equilibrium flow analysis was then used to analyze the
contours. Based on the solution results appropriate contour
changes were made until a satisfactory core and bypass splitter
design was obtained. A drawing of the compound nozzle splitter
is presented in Figure 3-31. The core area distribution, calcu-
lated wall tiach .numbers, and estimated boundary layer displacement
thicknesses are presented in Figures 3-32 through 3-34. The
bypass area distribution, calculated wall Mach numbers, and esti-
mated boundary layer displacement thicknesses are presented in
Figures 3-35 through 3-37.

3.3.6.4 Mixer Compound Preliminary Design

Because the lobe side-wall boundary-la!I;r blockages are
neglected in the first solution, the mixer-compound contours were
analyzed through two types of iterations of the radial-equilibrium
flow analysis. The mixer initial one-dimensional flow contours
were input along with the hub and shroud contour definitions
from the customer connecting flange upstream to the turbine rotor
exit and fan stator exit. The mixer lobe was input as radially
distributed annulus blockage. The mixer apogee and perigee con-
tours were varied until satisfactory area, Mach number, and dis-
placement thickness distributions were obtained. The boundary-
layer blockage on the mixer-lobe sidewalls was estimated and added
to the radial blockage distribution, and the contour was again
modified until acceptable distributions were obtained. The pre-
liminary design mixer apogee and perigee contours are presented
in Figure 3-38. The calculated mixer gore area, Mach number, and
displacement distributions are presented in Figures 3-39 through
3-41, and the corresponding bypass data are presented in Figures
3-42 through 3-44.

3.4 Detailed Mixer Design and Flow Analysis

A three-dimensional viscous-flow analysis method solution was
used to define the empirically optimized design and provide guid-
ance for developing alternate designs. A solution to the three-
dimensional compressible Navier-Stokes equations developed f,r),r
cascade flows (ref. 14, 15, and 16) was used to analyze the core
and bypass flow through the mixer lobes. A separate three-
dimensional mixing program developed for combustors (ref. 17, 18,
and 19) was used to analyze the flow in the mixing duct. The lobe
analysis results were input as inlet conditions to the mixing duct.
The main lobe design criteria were:

o	 Minimize the loss through the mixer lobes

o	 Minimize pressure and velocity gradients across the lobe
exit at the mixing plane

o	 Minimize the len gth of the mixer configuration
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s

i

The mixing duct design criteria are:

•	 Minimize mixing-duct-exit peak velocity and temperature

•	 Minimize mixing-duct-exit velocity, pressure and
temperature gradients

o	 Minimize mixing-duct length

3.4.1 Mixer-Lobe Three-Dimensional Viscous Compressible Flow
Ana vs s

Mixer-lobe :low paths are usually analyzed with a radial-equi-
librium flow analysis -.s described in 3.3.6.4. Unfortunately,
radial-:equilibrium-type-flow analysis cannot adequately account
for the secondary flows and corner losses generated by forced
mixers. AiResearch has successfully predicted these types of flow
fields using a. numerical solution to the 3-D compressible Navier-
Stokes equations. The analysis is based on an equation-splitting
technique. One of the split equations is solved by a numerical
matching method while the other is solved by a relaxation method.
The two equations are cross-coupled by an iterative process
between the relaxation and matching solutions. This method was
used to analyze the QCGAT mixer-lobe design (ref. 14, 15, and 16).

3.4.2 Mixer-Lobe Design Procedure and Geometric Definition

The initial geometry definition analyzed with the 3-D viscolis
program was based on the empirical mixer + o ptimization study and the
radial-equilibrium flow solutions. The core and bypass streams are
analyzed separately. The program analyzes a single lobe passage
which corresponds to the open lobe section in the stream. When the
core stream was analyzed, the shroud wall is decreased slightly
which truncates the tip of the lobF. This is necessary since the
lobe blockage approaches 100 percent as it nears the wall, and the
program calculations cannot negoti,-te the extremely blunt region
followed by an infinitesimal flow area. In the bypass stream the
same truncation is applied to the hub wall.

The 3-D viscous analysis of the preliminary mixer-lobe design
showed undesirable velocity distributions and higher-than-desired
losses. Flow problems were thought to be due to excessive
end-wall curvature or excessive hub-to-shroud diffusion grad-
ients„ ^7ix alternate geometries were analyzed in detail in an
attempt to reduce the losses a!id irnrove the velocity distributions.
The lobe length, taper ratio, aspect ratio, and end-wall curvature
were changed (Table 3-7). The three main lobe shapes; parallel,
radial, and modified radial, with the hub and shroud walls at
the mixing plane, are compared as shown in Figure 3-45. The
core lobes are symmetric about the zero-radian (0°) line and
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TABLE 3-7. MIXER LOBE DESIGN COMPARISON.

Geometric Parameters

L

Core Lobe Configuration TR AR PEN cm I	 (IN.)

Short Parallel 1.0 3.5 0.77 39.82 (15.68)

Long Parallel 1.0 3.5 0.77 49.98 (19.68)

Short Radial 1.8 3.14 0.73 39.82 (15.68)

Long Radial 1.8 3.14 0.73 49.98 (19.68)

Offset Long Radial 1.0 3.14 0.76 49.98 (19.68)

Modified Long Radial 3.5 3.52 0.77 49.98 (19.68)

Where	 TR = Taper Ratio

AR = Aspect Ratio

PEN = Penetration Ratio

L = Length from Turbine Rotor Exit to
Mixing Plane
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i the bypass lobe is symmetri, about the 0.26-radian (15°) line.
The offset-design was moved outward in the radial direction to
a new radius ratio so that the tip radius was identical to the

l
	 tip radius of the parallel wall lobe.

3.4.3 Mixer-Lobe Analytical Results
r
`

	

	 The core flow was analyzed for all six lobe configurations.
The bypass lobe was analyzed for the short- and long-parallel and
radial designs only, since the bypass flow appeared to be rela-
tively insensitive ?.o the lobe geometry changes and was much less
distorted than the core stream. Emphasis, therefore, was placed
on analyzing the core streams.

3.4.3.1 'Total-Pressure-Toss Contour !laps

A comparison of the total-pressure-loss contour plots indi-
cates the parallel and radial designs have similar loss contours
(Figure 3-46). The stretched versions of both the parallel and
radial designs show improvement over their shorter counterparts
while retaining contours similar to these counterparts. The
offset-long radial contours (see Figure 3-47) are also similar to
the long-radial. The modified long radial (also Figure 3-47)
exhibits higher losses in the tip region than the other radials.
The modified-radial contours also indicate a probable increased
loss relative to the other designs.

Bypass-lobe loss contours for the four conf i.gurat?ons analy-
zed were essentially the same. A typical loss contour ij shown in
Figure 3-48.

3.4.3.2 Velocity-Ratio Contour flaps

The velocity ratios of the short parallel and radial lobes
are similar except for the area of higher velocity in the
parallel design (see Figure 3-49). The stretched parallel and
radial designs are also similar and show the higher velocities
being pushed radially outward compared to the shorter versions
(also Figure 3-49). The offset stretched-radial velocity contours
are essentially the same as the stretched-radial contours (see
Figure 3-50). The modified stretched radial (Figure 3-50) exhibits
higher tip diffusion than the other designs. A typical bypass-
velocity contour is shown in Figure 3-51.

3.4.3.3 Radial Total-Pressure Loss Profiles

Core-integrated radial total-pressure-loss profiles are shown
in Figures 3-52 and 3-53. The profiles are determined by inte-
grating in the circumferential direction at given radial locations.
Figure 3-52 is a comparison of the short and long versions of
the parallel and radial designs. Stretched designs show less
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Figure 3-51. Short Parallel Mixer, Bypass Lobe Predicted
Velocity Ratio Contours.
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loss in the mid-region than the shorter designs. The long radial
design improved the tip loss over the short radial, but the long-
parallel design increased the tip loss over the short-parallel.
Modified and offset- long radial profiles are compared to the long-
radial in Figure 3-53. The modified -radial shows losses much
higher at the hub and tip sections than the long-radial. Profiles
of the offset- and long -radial are the same except for a slightly
lower tip loss for the offset design. In general, the stretched-
core designs have better radial-loss profiles. The stretched-
radial has the lowest tip - region loss, and the stretched -parallel
has the lowest mid- and hub-region loss.

Bypass-radial total-pressure-loss profiles for the four
configurations analyzed are shown in Figure 3-54. Basically,
the profiles are the same, except for the short-parallel design
which exhibits higher hub losses due to the narrow channels with
high curvature in the hub region.

3.4.3.4 Integrated Total-Pressure Losses

A loss coefficient, (w), and total-pressure losses are pre-
sented in Table 3-8 for the core and bypass lobe sections.
Pressure-loss design goals of 2.5 percent for the core lobe and
0.8 percent for the bypass lobe are included for comparison. The
modified-radial high-taper-ratio was the only design that exceeded
the core-design-goal pressure loss. The initial purpose of the
3-D viscous lobe analysis was to rank the mixer-lobe designs in
order of loss rather than expect actual absolute loss levels.
Therefore, the core-lobe designs were ranked into three loss
categories as shown in Table 3-9.

As shown in Table 3-9, core loss was reduced by lengthening
the lobes, thus reducing core-shroud curvature and the tip
diffu^:.on rate. The modified radial design, which was an attempt
to ob..a."' n a more uniform radial flow ratio between the core and
bypass, resulted in an increased loss of about 1 percent over the
other stretched designs.

3.4.4 Nixing Duct Three-Dimensional Viscous-Incompressible-Flow
Analysis

The 3-D elliptic-mixing program is a general prediction pro-
cedure for three-dimensional flows. The program uses an implicit
finite-difference method, in which the difference equations are
formed by integration over a small control volume surrounding a
grid point. A hybrid formula, which is a combination of the cen-
tral and upwind difference schemes, is used to represent the con-
vection and diffusion terms. The flow field is characterized by
the three velocity components, temperature, and pressure. The
calculation initially uses an estimated pressure field in the
momentum equations to obtain a preliminary velocity field; then
corrections to the pressure field are calculated so that the
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TABLE 3-8. MIXER LOBE INTEGRATED I.ESIGN POINT LOSSES.

Configuration

2

w	 1 - V=

vID OPT/PT

Core Lobe

Design Goal 0.230 0.0248

Sr ,-)rt Parallel 0.255 0.0266
Short Radial 0.251 0.0252

'Long Parallel 0.226 0.0196

Long Radial 0.212 0.0190

Offset Radial 0.215 0.0193

High Taper Ratio 0.292 0.0302

Bypass Lobe

Design Goal 0.079 0.0078

Short Parallel 0.113 0.0112

Short Radial 0.087 0.0078

Long Parallel. 0.080 0.0071

Long Radial 0.081 0.0071

TABLE 3-9. CORE APT/PT ti %.

2.0	 J 2.5
1	

3.0

Long Parallel Short Parallel Modified Long Radial

Long Radial Short. Radial

Offset Lona Radial
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resultinq velocity field will satisfy the continuity equation.
A 2-dimensional two-equation turbulence model is also included.
References 17, 13, and 19 describe the program equations in
detail.

3.4.5 Design Procedure and Geometric Definition

The initial flow conditions required for the analysis are
the velocity, static pressure, static temperature, and turbulence
level. Previous studies (rof. 19) comparing predicted and
experimental results for this type of flow analysis indicated that
the results are sensitive to initial conditions. Preliminary
analytical results were obtained using uniform initial conditions.
A further analytical refinement was made using the output profiles
from the'3-D viscous lobe analysis fer the velocity, presaure,
and temperature initial conditions at the mixing plane. The
static pressures for both gas streams were assumed to be constant
at the mixing plane.

A single value of the turbulent kinetic energy factor is
required as an initial condition. Separate values were calculated
for each stream based on the tu-bulence levels presented in
Reference A. A single: turbulent kinetic energy factor of 0.003
was used in the calculations. This level is close to the core
stream value since only a fraction of the bypass stream is
involved in the initial mixing. Since the turbulence model is a
two-equation model, a dissipation length factor is required. A
length factor of 0.02 was used.

The grid setup had 11 nodes in the radial direction, 11 in
the circumferential direction, and 20 nodes in the axial direc-
tion. 'These values are the maximum allowed in the nozzle program
version at this time due to array size limitations. The wall
contours and lobe shape were approximated with a symmetric grid
system as shown in Figure 3-55. The grid spacing was altered
circumferentially and radially for each particular lobe shape to
account for the geometry changes.

3.4.6 Comparison of Mixing Duct Analytical Results with Uniform
Inlet Flow

Initially, the mixing duct with the reference compound split-
ter and "hree basic mixer-lobe geometries (parallel, radial, and
modified radial), were evaluated with the 3-D Elliptic Mixing
Program in parallel with the .lone analysis. Uniform initial inlet
conditions from the cruise des,yn point were input and the veloci-
ties were compared at the end of the mixing duct. Peak velocity
levels were determined from the velocity profiles circumferentially
in line with the: centerline of the core lobe. The analytical
results were reviewed at the end of the mixing duct.

82



t^hit^t\.1 .	 a

U!^` E'UUK ^lUALll'y

W

Sw
us

ku
Q it

W

6

lZ

w
W
N,

N

z W i

0

W

Q)
A

O
•rl

M,
41

N

N
.4

(n

r-)
b

r.
.14
K

w
A
i
M

H
Q
C7
U
a

.n
t,
1
M

Q)

>4

a

0)
•,I

41

1-^ w
2

O

Z ^
X j^

^ W

J

83

x,



The cruise design point condition was used for most of the
mixing duct analysis due to its higher velocity split as shown in
Table 3-10.

Figure 3-56 shows the mixing-duct exit-velocity profiles in
line with the center of a core lobe based on uniform inlet condi-
tions. The initial velocity profiles are also presented for com-
parisort. All three lobe configurations decrease the peak velocity
relative to the compound nozzle. The modified-radial has the
lowest peak velocity and there is lithe or no difference in the
peak velocities for the parallel- and radial-lobe designs. It
should be noted that the compound- splitter circumferential velocity
is constant whereas the velocity decreases circumferentially for
the mixer lobes.

3.4.7 Comparison of Mixing Duct Results with Predicted
Inlet Pro iles

The effect of initial conditions on the mixing-duct exit-
velocity profile was investigated. The lobe-exit profiles (com-
puted from the 3-D viscous analysis) were used as initial condi-
tions for the 3-D elliptic mixing-duct analysis. These profiles
had typically lower velocities at the lobe tip, higher velocities
at the lobe center, and lower velocity near the hub. As one would
expect, similar _profile changes are calculated at the mixing-duct
exit as shown in Figure 3-57.

TABLE 3-10. AVERAGE MIXI14G PLANE VELOCITIES.*

SLS T/O Cruise D.P.

Parameters m/sec: (ft/sec ) m/sec (ft/sec )

VCore 165.6 543.5 197.2 647

VBypass 124.4 408 127.1 417

V Core /V Bypass ** 1.33 1.33 1.55 1.55

*::98 °K (77 1F) Day, M = 0. 8, Alt = 12,192m (40K ft)
**Dimensionless
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0ẑ
 W

W W '	 Q J

0K	 82C
21-0

cc J f

X E -1
z 

z	 `\

N N
W

^ i 	E
E

n

^	 u

II	 ^

H	 z

W
w	 d}
>	 > I

J
_Q

Q
W	 zJ J W
Q Q W
CC A O ^
9H8

1	 I

I

I	 I	 I

1	 I

I

b

^a
> r+

4J 4J
vW

^A
a a.,.1
r.r4
.-I .r

4 b

U ^

al W
O $4ua

Ln
1
to

N

tT

w

85



Lit

d

W Z
0

2' OQ

W 3

w U.

2
O

/ O
Z

UC^
/ LU0 LLJ

Z 	 O
d

S
f "'

O^t7	 M M N N O

S
N

W

' ^a

0.0
•r4 •,I

NW
a4J

U
CI 0
O

W rE r-4	 b'
.M

1 4J

^- v wu
b—, V H

ui

^ u N

Q LU
Q J

Q 4
^, ax

a a4J
r-4 •,q

go

w ,^1

a;

Ln
i
M

G1

0

.H
44

(w^l smadd

c0	 v	 N	 O	 00	 w	 of	 N	 O^-	 r	 r	 r

(NO snladu

86



The calculated inlet profiles from the 3-D viscous analysis
were scaled to maintain the same average velocity ratio for all
configurations. The velocities were scaled until the averaged
velocity and total pressure were equal to the compound splitter
values. With the same average inlet conditions the mixer
configurations have a higher initial core-peak velocity than the
compound-splitter configuration as shown in Figure 3-58.

The effects of lobe shape on the mixing process were assessed
by studying the calculated total temperature, total pressure, and
velocity profiles at the :nixing-duct exit plane as noted in
Figure 3-55. The predicted total-temperature profiles
(Figures 3-59 and 3-60) indicate that the lobe length had little
or no effect on the total temperature decay rate, i.e., there is
very little difference between the long and short parallel mixers,
or the long and short radial mixers. The increased radius ratio
or offset ratio had very little effect on the calculated total-
temperature profiles. However, there is some .indication that
increasing the offset ratio produces slightly larger peak tempera-
ture zones. Parallel lobe temperature profiles compared to radial
lobe temperature profiles show the peak temperatures are about the
same but the radial lobes reduce the centerline zone temperature
by 75°K (135 0 R). Use of the high-taper-ratio modified-radial
rather than radial lobes reduces the peal: total temperature by
75°K (135°R) and reduces the center zone temperature by 75°F
(135 11 R) over the radial lobes and 150°K (270 0 R) over the parallel
lobes. The compound nozzle has a peak temperature which is 94.4°IC
(170°R) hotter than the parallel or radial-lobe peak temperatures.
The compound center zone temperature exceeds that of the parallel
lobe value by 169.4°K (305 0 R) and it exceeds the radial lobe
temperature by 244.4°K (440°R).

The predicted mixing-duct-exit total pressures are compared
in Figures 3-61 and 3-62. The long- and short-parallel mixer
total-pressure profiles are very nearly the same. The bypass
total pressure loss is approximately 1 percent and the peak
core-lobe total-pressure loss is about 2 percent. The long-radial
mixer has the best total-pressure profile of the radial mixers.
The peak lobe loss is about equal to the parallel lobes (2
percent), but the core mid-passage losses are higher (1 percent).
In addition, a substantial portion of the bypass flow indicates
a 2-percent total pressure loss as opposed to the 1-percent
parallel lobe loss. The short-radial mixer and the offset-
radial mixer show peak core-lobe losses of 3 percent. The
high-taper-ratio lobe (modified radial) shows the highest peak-
core lobe loss (4 percent), while the entire core midpassage
zone indicates a 1-percent loss, and the entire bypass flow zone
indicates a 2-percent total pressure loss. Centerline zone
losses generated by the core centerbody are virtually the same
for all of the mixers analyzed.
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The velocity contours at the mixing-duct exit plane, Figures
3-63 and 3-64 show less variation since :.hey are a composite result
of the total-pressure losses and thermal-energy exchange. However,
the high-taper-ratio (modified-radial) design shows substantially
lower velocities. The relative peak velocities can be seer; more
clearly by plotting the radial-velocity profile at the circumfer-
ential centerline of a core lobe, as shown in Figure 3-65, and the
circumferential velocity profile at the peak-velocity radial lca-
tion, as shown in Figure 3 . 66. The peak velocities of the radial-
and offset-radial are lower than the parallel, and the modified-
radial has the lowest peak velocity. The modified, offset, and
standard radial have lower bypass centerline velocities than the
parallel because of a wider b:pass lobe shape at this radial loca-
tion.

The peak velocity decay profiles can be determined from an
axial cut through the middle of a core lobe and perpendicular to
the engine centerline as shown in Figures 3-67 and 3-68. The
large number of decay zones for the mixers compared to the,com-
pound indicate a higher velocity decay rate for the mixers. Since
the initial peak velocities varied for each configuration as shown
in Table 3-11, it was more meaningful to non-dimensionalize the
local peak velocity by the initial peak velocity in order to make
a clearer comparison. Non-dimensionalizing the local delta velo-
city ( Vpeak - Vbypass) by the initial delta velocity (Vcore)
V' ypaas) lives a peak velocity decay rate curve as shown in
Figure 3-69. The higher taper ratio (modified-radial) has the
best velocity decay rate while the long-parallel has the lowest
mixer decay rate. The compound nozzle has the lowest overall
decay rate. In all cases it appears that the mixing-duct length
is sufficient to maximize the velocity decay. In some cases it
appears that the mixing duct could be substantially shorter with-
out significantly increasing the mixing-duct-exit peak velocity.

Some average properties were calculated at the nozzle exit,
even though the mixing analysis program is not set up for highly
accelerating, high Mach-number regions. Average temperature and
peak-velocity ratios were calculated for the configurations that
were chosen for model scale testing (see Table 3-12). Calculated
properties were averaged at the nozzle exit, since nozzle-exit
properties would be obtained from the model testing. Integrated
nozzle-exit temperatures indicate the short-parallel mix-^r has
the highest calculated mixing while the compound nozzle has
the lowest. Mixing efficiencies could not be calculated because
the integrated total temperatures exceeded the 100 percent
mixed value. A peak velocity-ratio term was calculated where Vl
and V2 are the calculated unmixed velocities at the nozzle-exit.
Peak velocity ratios appear to contradict the average temperatures,
since the short-parallel having the highest mixing also has the
highest peal: velocity. This mad he a result of the inadequacy of
the mixing analysis program in regions of highly accelerating flow.
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TABLE 3-11. VARIATION IN CORE PEAK VELOCITY
AT THE MIXING PLANE.

Configuration
V peak

LMES i FT/SEC

Compound 197.1 646.8

Short parallel 225.7 740.6

Short radial 229.0 751.2

Long parallel 230.9 757.4

Long radial 219.9 721.5

Offset radial 226.9 744.5

High taper ratio 229.6 753.3

TABLE 3-12. CALCULATED AVERAGE PROPERTIES
AT NOZZLE EXIT.

Configuration	 TT /T 5 .2 P	 2V V 21

Compound 0.5600 1.000

Short Parallel 0.5685 0.570

Long Parallel 0.5660 0.552

Long Radial 0.5643 0.525
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SECTION IV
MODEL RIG TESTS

4.0 0.35 SCALE MODEL RIG TESTS

4.1 Test Procedures

4.1.1 Model Description and Instrumentation

Based on the empirical and theoretical analysis, four core-
nozzle configurations and three mixing-duct lengths were selected
for testing (see Attachment 1, Figures 6a-6c). Geometric param-
eters of the configurations are presented in Table 4-1 and the
hardware required to build up each configuration is specified in
Table 4-2. Configurations II, III and IV are illustrated in
Figures 4-1 and 4-2. The model assembly drawing and individual
hardware drawings are included in Fluidyne Pest Report (Attachment
1, Figures 2 and 5a through 5k, respectively). One standard-
compound splitter, one radial-wall mixer, and two parallel-wall
mixers of differing lengths were tested with a long mixing duct.
The best performing core mixer was then tested with two shorter
mixing-duct lengths.

Detailed rig and model instrumentation locations are
presented in Table 4-3. The bypass instrumentation consisted of
four total-pressure rakes of twelve probes each, eight hub- and
shroud-wall statics, and two total-temperature rakes of 4 probes
each at the rig bypass charging station. This station coincided
with the AiResearch bypass-rating station (STA 14). Core
instrumentation at the rig core charging station (STA 5.0) con-
sisted of four total-pressure rakes of five probes each, eight
hub- and shroud-wall statics, and four total-temperature rakes
of two probes each. The AiResearch core rating station (STA 5.2)
was a considerable distance downstream of the rig core charging
station (STA 5.0), therefore two temporary total pressure rakes
of six probes each (see Attachment 1, Figure 5a) and three hub-
and shroud-wall statics were located at the AiResearch core rating
station (STA 5.2). Wall statics were also located axially
along the plug and mixing duct. Base statics were located at
the exit of the core nozzles (STA 16), while base and wall
statics were located at the exit plane of the exit nozzle (STA 8).
Instrumentation specifications and station locations are illus-
trated in Figure 4-3. Specific instrumentation details may be
obtained from the model prints included in the Fluidyne Test
Report (Attachment 1, Figures Sa-5k).

4.1.2 Test Matrix and Run Schedule

The run schedule for each configuration is detailed in
Table 4-4. Each core nozzle (Configurations I through IV) was run

l	 with the fan shroud removed (core only at ambient temperature).
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k

t
w	 TABLE 4-1. QCGAT 0.35 SCALE MODEL EXHAUST

SYSTEM TESTS TEST CONFIGURATIONS.

No. Mixer Configuration XfD PE14	 I AR I TR	 I SR
L

cm n.

I Standard Compound 0.752 - I	 - - - 39.83 15.68

II Short Parallel 0.752 0.77 3.5 1.0 1.24 39.83 15.68

III Long Parallel 0.752 0.77 3.5 1.0 1.24 49.99 19.68
IV Long Radial 0.752 0.73 3.14 1.8 1.00 49.99 19.68

V Short Parallel 0.501 0.77 3.5 1.0 1.24 39.83 15.68

VI Short Parallel 0.626 0.77 3.5 1.0 1024 39.83 15.68

N = 12

m = 0.26 rad (1"°)
Rl = 14.35 cm (5.65 In.)

TABLE 4-2. CONFIGURATION DEFINITION.

Confi
Core
Nozzle Centerbody

Duct
Spacer

Exit
Nozzle

I Splitter Short - Long
(SKP17162) (SKP17160) (SKP17167)

II Short Parallel Short - Long
(SKP17163) (SKP17160) (SKP17167)

III Long Parallel Long X Long
(SKP17168) (SKP17169) (SKP17172) (SKP17167)

IV Long Radial Long X Long
(SKP17170) (SKP17169) (SKP17172) (SKP17167)

V Short Parallel Short - Short
(SKP17163) (SKP17160) (SKP17166)

VI Short Parallel Short X Short
(SKP17163) (SKP17160) I	 (SKP17172) (SKP1.7166)
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Future 4-2. Radial Mixer Model Configuration IV.
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TAB1'q: 4-4. TEST RUN SCHEDULE.

Configuration
Core
Only

'Dual
Flow,,

Pressure
Ratio(1)
Schedule

Exit
Survey

No.
Data

Points
Acoustic
Survey

I X 1 6
X 3 2
X 4 2 X
X 4 X 2

II X 2 3
X 3 2
X 4 2 X
X 4 X 2

III X 2 3
X 3 2
X 4 2 X
X 4 X 2

IV X 2 3
X 3 2
X 4 2 X
X 4 X 2

V X 3 2
i X 4 2 X
I X 4 X 2

VI X 3 2
X 4 2 X
X 4 X 2

I X 5 14
II X 6 14

II X 7 1
X 8 X 3

TOTAL 83

(1) See Table 4-5
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Each configuration was then run with both streams at ambient
temperature for the sea-level-static and cruise-design-point pres-
sure ratios. Following this, the core stream was heated and each
configuration was rerun with dual flow. The total temperature
split for the dual flow was set to match the desired fall-scale

G	 engine value. During one dual-flow hot run, the performance data
were recorded at the beginning of the run, and acoustic data were
recorded during the remainder of the run. This dual-flow hot run
was designated the primary performance run. Another separate dual-
flow hot run was made with the exit-nozzle survey rake. Installed
rake interference effects were anticipated, thus leaving some ques-
tion about the absolute level of the performance. Both the acoustic
and survey runs lasted for approximately one to one and one-half
minute.

The tested pressure-ratio schedules differed slightly from
the test plan. The tested schedule is shown in Table 4-5. The
desired pressure-split range could not be obtained with the com-
pound splitter due to unchoking of the flowmeter at the low-
pressure ratios and choking of the core stream in the rig adapter
at the highest pressure ratios. The desired range was obtained
with the compound mixer in the high-pressure-ratio end due to
its lower core flow requirements.

4.1.3 Acoustic Test Setup

Acoustic testing of the QCGAT scale model nozzle configura-
tions was conducted at the Fluidyne Engineering Corporation
Medicine Lake hot flow test facility. Acoustic testing was con-
ducted to provide a comparison of the relative noise levels and
directivities of the nozzle configurations -,ender consideration.
This information was used, along with the aerodynamic performance
information gained during the testing, in the selection of the
final nozzle configuration for the QCGAT engine.

The acoustic test area was located in the area outside of,
and adjacent to the mixed-flow test facility. The test area was
bounded on three sides by concrete block walls and, as a result,
the absolute sound pressure levels measured in this area were
questionable. The test was valid however, in providing comparison
of the noise levels on a relative basis. Six microphone locations
were utilized for measurement of the noise directivity levels.
The microphones were located at azimuth angles of 0.26, 0.35, 0.52,
0.70, 0.87 and 1.05 radians (15, 20, 30, 40, 50, and 60 degrees)
from the nozzle exhaust centerline at a radius of 2.44 meters
(eight feet) from the nozzle exit plane.

The microphones used were Bruel and Kjaer type 4133 (free
field) with the microphone diaphragm oriented for normal incidence
to the sound wave. The microphone height was located in the
horizontal plane through the nozzle centerline.
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TABLE 4-5. PRESSURE RATIO AND TEMPERATURE SPLIT SCHEDULE.

Schedule Core PR Bypass PR T	 Split

1: 6 po nts 1.05 -
1.10 - 1.0
1.15 - 1.0
1.20 - 1.0
1.25 - 1.0
1.30 - 1.0

2: 3 points 1.2 - 1.0
1.55 - 1.0
1.5 - 1.0

•3: 2 points 1.392 1.426 1.0
2.396 2.419 1.0

4: 2 points 1.392 1.426 2.49
2.396 2.419 2.62

5: 14 points 1.2 1.2 2.49
1.3 1.2 2.49
1.4 1.2 2.49
1.5 1.4 2.49
1.6 1.4 2.49
1.8 1.6 2.49
1.8 1.6 2.49
2.0 2.0 2.49
2.2 2.0 2.49
2.0 2.4 2.49
2.2 2.4 2.49
2.6 2.4 2.49

6: 14 points 1.2 1.2 2.49
1.3 1.2 2.49
1.5 1.4 2.49
1.6 1.4 2.49
1.4 1.6 2.49
1.6 1.4 2.49
1.8 1.6 2.49
2.0 1.6 2.49
1.8 2.0 2.49
2.0 2.0 2.49
2.5 2.0 2.49
2.2 2.4 2.49
2.6 2.4 2.49
3.0 2.4 2.49

7: 1 point 2.5 2.0 1.0

8: 3 points 2.5 2.0 1.5
2.5 2.0 2.0
2.5 2.0 2.5
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The microphones were located on the side of the nozzle
centerline farthest away from the major reflecting wall such that
the reflected signal would be subject to increased attenuation
due to spherical divergence of the sound wave.

A schematic diagram of the acoustic test layout and the loca-
tion of the microphones relative to the reflecting surfaces in the
test area is shown in Figure 4-4.

Prior to actual acoustic testing, the test area required
certain modifications i^L order to provide an area suitable for
testing. Double stacked concrete culverts with an approximate
1.2 meters by 1.2 meters (4 feet by 4 feet) opening in the lower
culvert are normally used as an exhaust deflector. A single culvert
is located next to the double stacked culvert. These culverts are
located immediately aft of the test cell.

For the acoustic testing, these culverts were removed from
the imriediate test area to accommodate the required microphone
locations. The single culvert was completely removed from the
test area. The double-stacked culvert was moved rearward as far
as possible to the position shown in Figure 4-4. This culvert was
used in this position to provide deflection of the exhaust stream.

A Fiberglass lined plywood barrier was constructed across the
test cell door opening. This door opening is 1.8 meters (6 feet)
wide and under normal operation the nozzle exhaust exits through
this opening. The intent of the barrier wall was to isolate the
jet noise produced by the scale model nozzles from the test cell
noise sources.

A photograph of the acoustic test setup with the acoustic
isolation barrier across the door opening is also shown in
Figure 4-4.

4.1.3.1. Acoustic Data Recording

Each scale-model nozzle-configuration was tested per the test
run schedule of Table 4-4. Acoustic test surveys were conducted
only at the pressure ratios of schedule No. 3. Each specified
acoustic data point was operated continuously until the noise data
for that condition was completed. The noise data of each micro-
phone location was recorded on a ICudelski Nagra IV, dual channel
tape recorder. Data was recorded for a minimum of 15 seconds at
each microphone location using a tape speed of 38.1 cm/s (15
inches per second).

C"

112



0
W

2 to
E	 W

~
W	 O Z

tO R
=

u	 Za O

CC	 C) ~

J

XX	 oC coO W
W> Z U co	 CC Q

UO
cc

SROUOv^ O	 ^J rQUOC U^
F- W W
to F- >
W W O

OZO Q

U
c°	 tiN

8°LL ,a`n	 0O	 H
LD

M	
OU 

U	 Q
N	

QW^	 XVJ

-
co O o E 

_	 r
O

NQ 14 
O cc

- N

W

NNC)	 NJ
J

~O-	 HVZ

OJ
m

Y
U
OJ
CO

W
F- O_

Ws
CC WU^
Z

O?
U
}

Ir
O

O

H

o^

v

Q
4j
N

n
U
Q
E
v

m

M
x
X
W

.I

w.D
0

v
.-1
t0

U

qH
C7
Ua
d'

I
d'

v
f4
7
U)

W

11l

UK1GIN 
I / l?IA ^M^ l Y

OF PW



Prior to each test sequence, the ambient noise of the test
area was recorded at each microphone location. Individual measure-
ments of ambient temperature, ambient pressure, relative humidity,
wind velocity and wind direction were recorded immediately prior
to and after each test sequence.

4.1.3.2 Acoustical Instrumentation

The acoustical instrumentation and equipment utilized during
the acoustic testing are listed in Table 4-6.

4.1.3.3 Acoustic Test Schedule

As shown in Table 4 -4, acoustic data was taken for each
nozzle configuration at pressure ratio schedule No. 3. Table 4-5
shows the desired core and bypass pressure ratios and temperature
split for this test schedule,

Prior to actual testing, it was determined that the air
temperature in the reservoir tank used for supplying bypass air
to the nozzle could vary from run to run due to pump work input
and change in ambient air temperature. The resultant core and
bypass flow velocities at the rating station, for a constant core
and bypass pressure ratio, could vary significantly for each nozzle
configuration tested.

As a result, it was decided that maintaining similar core and
bypass velocities at the nozzle rating station was more important
to the acoustic test results than maintaining a given pressure
ratio schedule.

Consequently, the bypass rating station temperature was
monitored at the beginning of an acoustic run. Since the core
temperature was being set to a given temperature split between
the two streams, both the core and bypass pressure ratios were
adjusted to account for changes in tank temperature. This
resulted in maintaining a relatively constant velocity at -Lhe
nozzle rating station for each tested nozzle configuration.

4.1.3.4 Acoustic Data Reduction

Reduction and analysis of the acoustic data taken at the
Fluidyne test facility was performed at the AiResearch acoustics
laboratory. Data reduction was performed by 1/3 octave frequency
analysis with an acoustic instrumentation package utilizing on-line
computer capability. A schematic diagram of the acoustic data
reduction and analysis system is shown in Figure 4-5.

The resultant acoustic data for each nozzle configuration at
both the sea level static and cruise operating conditions are
contained in Appendix D. The resultant acoustic data shows
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o	 Condenser Microphones, (6), B&K Type 4133

o	 Microphone Preamplifiers, (6), B&K Type 2619

o	 Portable Tape Recorder, (1), Kudelski Nagra IV-SJ

o	 Sixteen Channel Microphone Power Supply (1), B&K Type 226

o	 Condenser Microphone, (1), B&K Type 4145

o	 Battery Cathode Follower, (1), B&K Type 2630

o	 Pistonphone_Calibrator, (1), B&K Type 4220

o	 Microphone Cables, (6)

o	 Microphone Windscreens, 1.27 cm (1/2 inch), (6), B&K
Type UA0459

o	 Psychrometer - Sling, (1) Taylor Model 1323

o	 Wind meter, (1), Weather-Measure Corporation W121-SD

o	 Microphone stands, (6)

115



ANALOG
TAPE RECORDER

B& K 3347
THIRD-OCTAVE
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	 TEK 4921
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Figure 4-5. Acoustic Data Analysis System.
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conclusively that scale model configuration II provided the lowest
relative noise levels of the six nozzle configurations tested.

4.1.4 Nozzle Exit Survey

The exit survey rake is shown in Figure 4-6 and the mounting
structure is shown in Figure 4-7. The survey system was free-
standing with no connection to the rig or model hardware. The
rake was rotated about the nozzle centerline by an actuator and
riny-year system. The survey rake can be actuated through a
r .28 radian (360 degree) arc in increments of 0.017 to 0.279
radians (one to sixteen de(3rees). Fcr this test it was set for
0.052 radian (three-degree) increments over a 0.523 radian (30-
degree) segment. The control unit was activated by a manual
stepping switch with tracking of the location provided by a digital
readout. The survey rake sensors consisted of 15 thermocouples,
6 totai-pressure probes, and 3 static-pressure taps (a pitot-static
at the centerline of the survey rake and 2 wall statics on the
nozzle-exit shroud).

The survey-rake system was mounted on an adjustable platform
which allowed accurate locating of the rake relative to the nozzle.
The survey-rake initial position was horizontal; therefore, the
nozzle-exit--wall statics were at 1.57 and 4.71 radians (90 and 270
degrees). These were used as location points to aid in aligning
the rake. The rake-centerline static- pressure tap was aligned in
the same axial plane as the wall statics. The same alignment
procedure was used for each configuration.

A survey run consisted of bringing the rig flow system up to
the run condition anti allowing the flow to stabilize. Perform-
ance and survey data were recorded for the first rake location,
the temperatures were recorded on a digital printer, and the
pressures xo re recorded by°photographing a manometer board. Once
the photograph was taken, the controller manual stepping switch
was activated. About three seconds were required for the rake to
reach its new position as indicated by the controller digital
readout. :`Approximately five seconds elapsed from the time the
rake was in its new position until the new picture was taken.
Visual observation of the mercury manometers indicated that pres-
sure stabilization occurred within approximately one second after
the rake roached each new position.

4.2 Data Reduction

4.2.1 Model Inspection

An enlarged end view tracing (10X scale) of each mixer core
nozzle was made with a side view tracing machine. Lach lobe area
bounded at the Taub by the plug radius was integrated with a digiti-
zer machine, and lobe hub radii were inspected and averaged (see
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Figure 4-6. Exit Survey Rake.
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Table 4-7). If interference with the plug radius occurred, an
incremental area was calculated based on the plug radius and aver-
age lobe-hub radius. This delta assembly area was added to the
summation of the lobe integrated areas to obtain the assembled
mixer core-nozzle exit areas.

Bypass-nozzle exit areas were obtained by subtracting the
core-nozzle exit area and trailing-edge blockage area from the
total mixing-plane area. The mixing-plane area dimensions con-
formed to Llueprint specifications since the plug radius and fan-
shroud radius conformed to specifications. The trailing-edge
blockage was calculated from the print by the following:

ABLOCKAGE ' (PERIMETER)(THICKNESS)

The splitter core-nozzle area was initially inspected at
four 3i.ametersj but, due to some asymmetry which occurred when
the static pressure lines were soldered, it was reinspected at
18 diameters (every 0.1745 radians (10 degrees)) (Table 4-8).

The final inspected mixing plane areas used in the data
reduction are presented in Ta.51e 4-9.

Nozzle-exit diameters were inspected at four locations. The
inspected area for both tit shrouds (Drawings SKP17166 and
SKP1:167) Ias 320.947 cm? (49.747 in 2 ) for the model or 2619.99 cm
(405.10 isi ) full-size. Viis was esIentially th same as the
drawing s ecified aria of 320.896 cm (49.739 in ) model scale or
2619.3 cm (406.0 in ) full scale.

Mixer-core lobe shroud-exit-diameter inspections were made
at the rig site for two purposes. The first reason was to
verify the core areas calculated with the effect of the plug
interference when the mixers were installed. The second reason
was to determine if any permanent area change occurred after
having run several hot runs. Inspected diameters are shown in
Table 4-10. Average delta diameters between installed and
uninstalled mixers matched the estimated results within 0.254 cm
(0.100 in). This is within 0.25 percent of the core area.
Therefore, the core areas as calculated earlier were used as
installed areas. After several hot runs, each mixer was removed
and allowed to cool. Lobe shroud diameters were measured and
compared to the initial uninstalled condition (see Table 4-10).
All mixer lobe shroud diameters decreased slightly after having
been run hot. The estimated area change was less than 0.36
percent. Geometric areas were not corrected to account for this
small therrial shift.
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TABLE 4-7. INSPECTIO': DATA SCALE tlI%ER CORE NOZZLE.

Area
Lobe
HubConfigure-

Cm (In.	 ) (	 n.on obe Notes

1 13.677 (2.1201 5.011 (1.977) ^*Rinterference 
5.027	 (1.979)	 -

2 13.61: 12.110) 4.940 (1.945) 4.971	 (1.957)	 -	 0.056	 Cm	 (0.022	 in.)
3 13.761 2.133) 4.953 (1.950)
4 14.212 2	 203) 4.936 11.944) A	 -	 1376.96	 Cm 	 (213.43	 In. 21
5 13.948 (2.162) 4.935 (1.943) F.S.

Mixer C 5 14.187 (2.199( 4.925 (1.939)
(S)(P271.60) 7 14.J45 (2.177) 5.014 (1.974) -'A	 o n (:.979 2	-	 1.9572)

8 13.909 (2.156) 5.044 (1.906)
9 13.916 (2.157) 4.690 (1.925) 9A -	 •0.272

10 13.787 (2.137) 4.890 (1.925)
11 13.999 (2.112) 3.052 (1.989) ACORR °	 25.897

	 •	 0.272	 -	 26.161
12 14.006 12.171) 5.060 (1.992)
tai 167.077 x25.897) 4.050 (1.957)	 Avg. A	 '	 1378.19	 Cm `	(213.62	 In.`)

CORP.	 F.S.
e Avg 13.922 12.158) 1

1 13.670 (2.119) 5.194 2.045) -R interference -	
0.0

13.768 (2.134) 5.202 (2.048)
2	 2)1338.903 13.316 (2.064) 5.123 (:.017) AF.S.	 ,	 Cm	 (207.53	 in

4 13.703 (2.124) 5.118 (2.015)
5 14.258 x2.210) 5.232 02.060) A	 0 since all lobe radii

Assembly
Mixer A 6 13.477 (2.089) 5.149 (2.027) ite greater than the plug radius.
(SKP171531 7 Ij.581 (2.105) 5.144 1;2.025)

8 13.606 (2.109) 5.232 (2.060)
9 13.806 (2.140) 5.271 (2.075)

19 13.903 (2.155) 5.220 ;2.055)
11 13.568 (2.103) 5.215 ;12.053)
12 13.361 2.	 '.i' $. 140 (2.0451
tal 164.11 25.4231

1
5.191 2(2.04381	 Avu.

.e	 Av3 13.01 (2.1191

1 13.471 (2.088` 4.8n0 (1.890) AF S
	 1348.13 Cm

2	(208.96	 in 2)
2 L3.464 (2.087! 4. 1 95 (1.888)
3 13.968 (2.165) 5.026 x1.979) RAv	 -	 4.909	 Cm	 (1.933	 in)
4 14.103 (	 -2.1,86) 5.026 (1.979) g
5 14.8.,-. 2.376) 5.108 (2.01.1) :R0.117	 Cm	 (0.046	 in)Interferencefixer C n 13.89" (2.154) 5.080 2.000)

,SFP1"1,70 , 7 14.083 12.1831 4.92 x3 1.937 , ',A	 -	 3.645	 Cr-	 (0.565	 in2)
8 13.348 a2.in2) 4.89^ 11.928)
9 13.3.32 (2.068' 4.811 1.894) A	 1.60.786	 Cm 	 (26.162	 inCORP

1 11
11

1.3.464
12.844

12.087'
(1.994

4.806 (1.892)
2	 214.8n6 (1.892) 1377.66	 inA_	 -	 Cm	 (213.57^CRR C.S.

12 13.a5B (2.117) 4.@41 (1.906)
tal 165.142 (25.591) 4„910 (1.933)	 Avg.

L.	 e Avg 13. '-.-1 1	 (2.133)

;'LU	 (PRINT) ' 5
' 325 Cm 1.979 in)

PLU, (PRINT) - 79.380 Cm` 112.304 in
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TABLE 4-8, MODEL INSPECTIONS - SPL'ITTER (SKP17162).

Angle Diameter

Measure- a
ment rJo. Radians (Degrees) Cm (In) Dotes

1 0 10) 17.539 (6.905) Diameter measured
2 0.174 (10) 17.546 (6.908) every 0.1 1 45 rad,
3 0.349 (20) 1x.655 (6.951) (10 0 ) same a orien-
4 0.523 (30) 17.848 (7.027) tation as drawing.
5 0.698 (40) 17.810 (7.012)
6 0.873 (50) 17.665 (6.955)

27 1.047 (60) 17.564 (6.915) A6 = 3 7 .806-n (1.979)
8 1.222 (70) 17.564 (6.915) =37.806-12.304
9 1.396 (80) 17.604 (6.931)

210 1.571 (90) 17.645 (6.947) =164.528 cm
11 1.745 (100) 17.653 (6.950) (25.502	 in. 2)
12 1.919 (110) 17.638 (6.944)
13 4.094 (120) 17.615 (6.935)
14 2.268 (130) 17.610 (6.933)
15 2.443 (140) 17.622 (6.938)
16 2.617 (150) 17.645 (6.947)
17 2.792 (160) 17.640 (6.945)
18 2.966 1	 (170) 117.597 (6.928)

DAVE -	 17.622	 (6.938)

AAVE	 243.909 cm 	 (37.806 in 2)
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TABLE 4-9. MIXIIIG PLANK INSPCCTED AREAS.

Ì
! Core Nozzle C'o [i oration

Core Area
At Station 6.0

Scale Model
Core Area

At Station 6.0
Bypass Area

At Station 16.0

Scale Model
Bypass Area

At Station 16.0

Cm 1n2 Cm2 In CID 2 In 2 Cm2 12

Splitter	 (1) 1,343.09 208.10 1.64.52 25.502 1149.34 480.15 385.79 59.798
(SIT 17162)

Short parallel	 mixer	 ill) 1.336.90 207.53 164.01 25.422 3095.74 479.84 379.23 50.781
(SIT 171*63)

+	 ong parallel	 mixer	 (111) 1378.19 213.62 168.82 26.168 3056.44 4 73.75 374.42 58.035
I(SYP17169:

Long	 radial	 Fixer	 (IV) 1377.66 213.57 168.79 26.162 3056.57 473.77 374.43 58.037

Print	 areas 1.354.84 210.0 3137.60 486.33
(splitter)

3079.80 477.37
(mixer)
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TAIL$ 4-10. INSPECTED 11IXEA LODE SHROUD DIAMETERS.*

Delta Diameter
Uninstall*d Mixer	 Installed Mixer	 ;Inetallod-Uninetallod

Luber	 T
14.194	 24.206	 :1,190	 :4,194	 24.33?	 23,439	 0.0	 0.127	 0.249

9.'125)	 19.510)	 (9,1]0)	 (9.525)	 (9.:1'00)	 (9.220)	 0,0	 (0,050	 (0.096)

2	 24,157	 24,359	 2).241	 24,257	 24.420	 123.442	 7.0	 0.061	 0.246
19.950)	 (9.590)	 (9.150)	 19.550)	 (9.614)	 (9.2291	 0.0	 (0.024)	 (0.0791

:4,197	 24.264	 21,241	 24.09"	 24.417	 23,352	 0.0	 0.152	 0..:12
).407+	 (9,55))	 19,150)	 x9.40-)	 19.61,31	 19.194)	 0.0	 (011160)	 (0.044+

241234	 23.139	 24,244	 21.374	 21.467	 0.0	 0.140	 0.726
) .145)1	 19.i41)	 19,1121	 IQ.S45)	 119.546)	 19,239)	 11.0	 (0.055)	 10.1:91

i	 :4.1311	 14,21')12).139	 24.130	 24.369	 21.4)7 ^	 0.0	 0.150	 1).297
1).^0U1	 (`1.535)	 I(a,110)	 19.5+10)	 (9.5941	 0. 227 1 	0.0	 (0.1159)	 (3,117)

n	 4,168	 24,3sy	 23,114	 24.168	 24.407	 23.444	 0.0	 0.046	 11.330
).``151	 (9,5901	 ^lu„100!	 (9.515)	 19,649)	 19.230)	 0.0	 (0,019)	 t0.130)

	

Avg.	 d.0	 0,2 54 	t). 114
(0.045)

1	 ^

I
Util,tlrtallad Afta1	 Melts !1 )amstrr (Unlnstallad)

D ,tnj Ru; n  -Ho t  _	 \f'to ' Rylioin g l ^t
ho	 II	 1I"	 IV	 111 1 	 1d

	

1 )0	 4.:04	 ), 1 ).:	 -0.01,4	 -0.001	 0.003
001	 19,5141	 11) 1311	 -d.0:4) 11-0.001 1 	(11.001)

	

:4.229	 :l, )54	 :1.228	 -0.048	 0	 -0.013
' 1),519)	 1`).59(11	 t`) 145)	 1 - 11.011)1	 %11.00p)	 ( -11,(105)

1	 :4.081	 :4, 2:n	 :1,041	 -0,015	 -0.038	 -n.196
).061 1 	().5381	 (9.0711	 (-0.1106)	 (-0.015)	 (-17.077)

4	 24.2:9	 14.201	 :3,:31	 -0.01.11	 -11,03)	 0.094
14,s39)	 (9.52x)	 19,14^)	 (-01006)	 1-0.013)	 ,8.03')

5	 :4,064	 24.204	 2J.144	 -0.044	 -1111715	 I	 01005
9.18')	 (9.5296	 V,112)	 1-0,1118)	 (-0.0061	 t(1.002)

a	 14,11.0	 :4.25'	 25, 114	 -0.006	 -0.182	 (1

	

9.5+17)	 19.IAt1)	 (-0.01131	 (-0,040+	 11.00(1)

	

Av.).	 -0.013	 -0.078	 -0.1120
I	 ;-0.0:1))	 C-0.0136	 t-0.000)

418

	

A	 0. 1:	 -0. 3 1	 -0.1.9

*01-0-1s	 in cm And 11n.1
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i

4.2.2 Core-Only Data

The splitter-core-only configuration was initially run with
two removable station 5.2 pressure rakes in place to obtain the	

A

pressure loss correlation from core station 5.0 to station 5.2.
The core station 5.2 total-pressure rakes were then removed for
the remaindo r of the testing. Thrust data was then obtained with-
out the interference drag of the station 5.2 rakes.

Por the initial series of core-only test runs, total pressures
were measured at station 5.0 (rig core inlet charging station) and
station 5.2 (AiResearch core rating station). Total pressure
profiles for these two stations are presented in figures 4-8 and
4-9. These total pressures were integrated by area averaging since
the profiles are fairly uniform and the static pressure gradients
are nearly uniform. The core-adapter-duct total-pressure loss is
presented in figure 4-10 as a function of the square of the inlet
Mach number. The data falls close to the theoretical friction-
loss calculation, which indicates the pressure loss is linearly
proportional to the duct dynamic pressure over the range of test
conditions. Therefore, the total pressure loss between station 5.0
and 5.2 could be entered into the test data reduction deck as
AP,/PT = 0.01427 15.0 M5.02

Core-only pressure ratios were kept below 1.3 since the core
mixers are diffusers and, based on a 1-dimensional analysis, station
5.2 chokes when the pressure ratio across the nozzle reaches 1.3.
The mixer-core nozzles typically have about a 10 percent lower
flow coefficient than .a splitter nozzle, hence the mixer-core
nozzle could be run to a 1.5 nozzle pressure ratio.

The Core-stream pressure losses from station 5.2 to station
6.0 were obtained from the core-only measured thrust coefficients.
A throat efficiency term (C S ) of 1.0 was assumed for the standard
compound core nozzle since 'Elie exit flow angle was estimated to be
axial and there is no convergent section as in a typical convergent
nozzle where C S = 0.997. A throat efficiency of 1.0 was also used
to calculate the mixer-nozzle pressure losses. Therefore, velocity
profile and flow-angle effects are included in the pressure-loss
term. The mixer-nozzle pressure losses were calculated in this
manner in order to be consistent with the input for the compound
flow analysis program. With a throat efficiency of 1.0 for the
core nozzle ,;, the delta thrust coefficient is:

AC  = 1.0 - 
C  TLSTFD
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Sensitivity of ideal thrust to total-pressure loss as a function
of nozzle-pressure ratio is obtained from the following equation:

1/2
Y+1	 L-1

FID _ 2Y 2 2 Y-i 1 - PW 
Y

P-T F	 Y-1 Y+1	 PT	 (13)

Pressure loss is thus determined as:

APT/PT	 (14)
AP /P = AC—
T T	 F FID rI D

Unfortunately, two out of the three core-only pressure-ratio
points for the mixer configurations choked between station 5.2 and
6.0, evidently due to the 3-dimensional blockage effect of the
lobes in conjunction with the local acceleration along the plug
surface. Unrealistic high-pressure loss was obtained from the
remaining 1.2 pressure-ratio point for each of the mixers. This
is considered to be the result of the thrust accuracy at low-
pressure ratios. The final mixer-core pressure losses were obtained
from the procedure discussed in the following section.

4.2.3 Dual Flow Data

Typical core inlet total-pressure and total-temperature pro-
files for a hot dual-flow run are shown in Figure 4-11. Core and
bypass total-pressure probes were area weighted for simplicity
since the error is neclligible due to the uniform total-pressure
profiles and static pressure data. Total temperature element
locations were also area weighted. Typical fan inlet total-
pressure and total-temperature profiles are shown in Figure 4-12.

The standard-compound exhaust nozzle cold-flow test data was
used to establish the mixing duct total-pressure loss. The mixing-
duct and bypass-duct losses were initially estimated by using the
standard friction-loss analysis. The core total-pressure loss was
obtained from the core-only test data. Minor adjustments were
made to the mixing-duct and bypass-duct losses until the tested
thrust coefficients and corrected airflows were matched. Both the
sea-Level static and cruise design point cold-flow test data was
used in establishing the mixing-duct and bypass-duct total-pressure
losses for the standard-compound exhaust system. The mixing-duct
shroud friction loss was assumed to be the same for all configura-
tions. After establishing '-he mixing-duct losses, the losses
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through the mixer could be determined. The predicted core and by-
pass losses were adjusted until the tested thrust coefficients and
corrected flows were matched for each configuration. The cold flow
sea-level static and cruise-design point data were again used to
establish the losses for the respective configurations. The losses
derived from the test data and the predicted losses were in good
agreement. Details of the comparison are covered in Section 4.5.

The mixing efficiency can be determined by comparing the hot-
flow and cold-flow test data. Before this is done, however, a heat
transfer correction must be applieu to the hot-flow data. During
dual-flow hot runs, the core stream was heated to 921 °K (1200 °F)
and controlled to a desired temperature to duplicate the predicted
temperature split, TT(core)/TT(bypass), of the full scale engine.
Each of the configurations were run with dual-flow, hot-core condi-
tions at the SLS/TO and cruise design-point pressure-ratio settings.
Since the core stream total temperature probes were located
upstream of station 5.0 (inlet-charging station), the distance to
the rating station 5.2 was approximately 40 inches. Therefore,
heat transfer occurring between the rig charging and AiResearch
rating station would lower the actual rating-station temperature
from the measured inlet value. At the nominal design point, the
delta temperature was calculated to be 4.4°K (3°F) or about 1 per-
cent error in the core total temperature. Since total temperature
affects not only ideal thrust but also the mixing-efficiency cal-
culation, a temperature correction was included in the thrust data
reduction program as shown below:

-0.2

	

T	 _ T	 w5.0)

	

AT = 0.017 (T 	 T14.0) T.

 + 2.5 ( W5.0	
(15)

w14.0

The heat-transfer correlation included the effect of flow ratio
between the cold and hot streams. For the range of flow ratios
tested, the computed change in temperature ranged from 3.33°K
(6°F) to 6.6°K (120F).

132



With the corrected core total temperature, the derived thrust
mixing efficiency can be determined. The difference between the
thrust coefficients from the hot dual-flow runs and thrust
coefficients from the cold dual-flow rnns yields the thrust gain
due to thermal mixing. Percent mixing is then obtained by divid-
ing the tested thrust gain by the ideal thrust gain possible as
shown below:

CF	 -
HOT CF COLD	

CF TEST - CFO$
__ 

nMIX	 CF 100% - CF 0$	 CF 00% - CFO$	 (16)

IDEAL	 MIXINV
MIXING

The ideal thrust gain is determined from the individual flow
properties and continuity, momentum, and energy equations.

4.2.4 Exit Surveys

Exit-survey running time ranged from 1 to 1 1/2 minutes.
During this period, adiabatic expansion of the flow from the pres-
sure tank decreased the total temperature of the cold stream.
Since the rig temperatures were set by holding a constant temper-
ature ratio between the hot and cold streams, the core-flow total
temperature also decreased throughout the survey run. The exit-
survey data were recorded as the rake was moved to different theta
locations therefore resulting in difterent inlet temperatures than
the initial rake setting. A nondimensional correction was used to
ratio the survey temperatures taken at each position as referenced
to the initial inlet temperature. The correction is as follows:

_ (AT 5.2 - ATT14.0) I

TT (N)	 TT	 TT5. 2 - TT14 0 / (T - T
	 - AT	T 	 T14.0)	 T14.0

TT 5.2	 T'^' 5.2

where:	 TT = Probe measured total temperature

	

T 5.2	 TT5.2	 TT5.2

	

`T14.0	 TT14.0	 TT 14.0

primed (') denotes initial rake setting

not primed denotes subsequent rake settings

(17)

133



The equation is a linear interpolation as graphically shown
in Figure 4-13. The correction was used at each rake setting.
Inlet-station total- temperatures were recorded at each rake setti
Tnus, all survey total-temperature data could be integrated, sine
each rake setting had been corrected to the same inlet reference
conditions.

Survey-rake total- and static-pressure probes were calibrate
at true Mach number levels of 0.5, 0.7, 0.9, and 1.2. The
calibration curves for total and static pressure are .shown in
Figures 4-14 and 4-15, respectively. The calibration curves were
fit with polynomial or linear fits where appropriate. The test
range of the measured centerline pressure ratio (PT/P S ) was 1.25
to 1.45. This fell between the Mach numbers 0.5 and 0.9 calibra-
tion points.

Initial exit- survey data reduction is explained in detail in
Appendix A. The reduced data were area integrated and plotted.

4.3 Test Results and Data Analysis

An overall performance summary of the test configurations is
presented in Table 4-11. Hot-flow thrust coefficients, mixing
fficiencies, and jet noise reductions are shown. All mixer test

configurations exceeded the thrust-coeffi-lent design goals.
Design goal mixing efficiency was met by Configurations II and VI
(short parallel mixer) based on an average of both flight condi-
tions„ Configuration II also yielded the maximum jet noise reduc-
tion. Tne short-parallel -mixer lobe provided the better perform-
ance and lower jet noise relative to the long parallel or long
radial lobes at sea level. The long mixing duct (X/D=0.752) pro-
vided better performance and lower jet noise at sea level relative
to the shorter mixing ducts. The combination of the short
parallel mixer and long mixing duct (test Configuration II) was
chosen as the final full-scale exhaust-system design.

4.3.1 Mixing-Plane Flow Coefficients

Core and bypass mixing-plane flow coefficients for both the
standard-compound and mixer-compound nozzles correlated well as a
function of the total pressure ratio (see Fi gures 4-16 and 4-17).
The standard splitter-compound core-flow coefficients matched the
predicted level whereas the mixer-compound core-flow coefficient
was lower in level and the characteristic shape was substantially
different above a total pressure ratio of 1.0. The predicted
mixer-core flow coefficients came from cold-flow testing of a mixer
design wit'z accelerating rather than diffusing flow through the
lobes and much less core flow turning which tended to give a more
uniform flow profile at the mixer exit. The bypass-flow coeffi-
cients were higher than predicted for both the standard- and
mixer-compound nozzles. This was due to a smoother upstream
duct with a more uniform area distribution and lower losses
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compared to the IR and D mixer test data used for the prediction.
Both the standard compound and miner-compound nozzles snow a shift
in flow coefficients between cold and hot flow. Since cola
inspected areas were used in both calculations, the effect of area
change due to thermal growth and hot-flow temperature profile in the
core stream are both affecting the flow coefficient shift. The
standard-compound nozzles showed less than one-half percent
difference in the core stream (see Figure 4-16) but 2- to 3-percent
difference in the bypass stream (see Figure 4-17). The large
difference in the bypass appears to be due to data scatter.

An increase of three-quarters of one percent was calculated
for the mixer core area based on thermal growth. The data in
Figure 4-16 indicates a total flow coefficient difference of three
to three and one-half percent for the mixer core, which leaves
about two percent to be attributed to temperature profile. Figure
4-17 shows a two- to three-percent difference in the mixer-bypass
hot- and cold-flow coefficients. This is either attributable to
data scatter or a much larger thermal growth effect than estimated.

Inlet Flow consistency was checked by plotting core- and
bypass-corrected flow versus the respective core and bypass inlet-
pressure ratios (see Figures 4-18 and 4-19). Core-corrected flows
fell within a total pressure error band of +0.5 percent and the
bypass-corrected flows were within a total-pressure error band of
+0.25 percent. The sensitivity of mixing-plane flow coefficients
Co inlet total pressure was based can an inlet total-pressure
measurement error of +2 mm by or +0.25 percent. Flow-coefficient
data fell within the inlet total-pressure error band as shown in
Figure 4-20.

4.3.2 E''xit-Plane Flow Coefficients

Cold- and hot-exit-flow coefficients for the standard- and
mixer-compound-nozzle systems are presented in Figure 4-21.
Cold-flow coefficients are higher than the predicted levels,
primarily clue to lower pressure losses in the bypass duct than
were predi c Led. This was indicated by the mixing-plane bypass-
flow coefficients in the mixing-plane flow coefficients. (See
Section 4.3.1.)

Tested cold exit-flow coefficients between standard- and
mi- er-compound systems are nearly '_he same and appear to have
characteri:- f ics similar to the predicted curves (see Figure 4-21).
The dec.rea , ^ in exit-flow coefficient from cold to hot is about
0.5 percen for the standard-compound and about 2.5 percent for
the iiixor	 ml)ound system (soe Figure 4-21) . The small decrease
foi: the st .lard compound is due to the change in exit velocity
gradient CLMsed by the temperature profile. Since the mixer system
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has less oi a temperature profile:, the large difference between
cold and hct flow coefficients must be attributable to the pres-
sure loss associated with a high degree of thermal mixing. Exit-
flow coefficients presented in Figure 4-21 are based on equal-
pressure-ratio datL points. There is some indication from data
matching that a family of curves may exist with peal; values where
the pressure ratios are equal.

4.3.3 tiixing-Duct Static Pressure Distributions

Static-pressure distribution along the mixing-duct shroud for
configurations I through IV at the sea-level static and cruise-
design point indicated constant static pressure through the
constant , area mixing duct (see Figure 4-22). Static pressures
read the same at circumferential locations of 0° and 15°.

Plug-axial static-pressure distributions indicate that the flow
field through the core was substantially different between
standard- and mixer-compound nozzles. From the rating station
105.16 cm (41.4 in.) to station 116.84 cm (46 in.) ;where the
mixer lobes begin) the flow is diffusing with the standard-
compound as designed, but is accelerating with the mixer-compound
nozzles (see Figures 4-23 and 4-24). Because of the curvature
effect of the plug, the flow accelerates locally along the plug
surface from station 116.84 cm (46 in.) to station 127 c ►n
(50 in.). However, the flow accelerates more rapidly with the
mixer nozzles indicating an increased effective blockages due to
the mixer lobes. The blockage effect of the lobes may have choked
the core near station 127 cm (50 in.) as indicated by the local
sonic velocity in Figure 4-23. It should be noted that at a core
pressure ratio of 1.2, the acceleration affect of the lobe blockage
is not as severe. Since the pressure ratio across the core nozzle
at the design point is only about 1.1, this choking effect has no
impact on the system operation. however, the local choking that
occurred through the mixer lobes prevented the core-only pressure-
ratio runs of 1.35 and 1.5 from being useful in obtaining a mixer -
core total-pressure loss.

Plug static-pressure distributions from dual.-flow runs at the
sea-level static and cruise-design point are presented in Figures
4-25 and 4-26. The distributions indicate the same trends as the
core-only distributions with slightly higher local acceleration
with the mixer-core nozzles. The peak Hach number on the plug sur-
face is 0.41 at sea-level static and 0.53 at the cruise-design point
for the mixer-core nozzle. The standard-compound nozzle had lower
plug peak Mach numbers of 0.36 at sea-level static and 0.45 at the
cruise-design point.
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4.3.4 Mixing-Plane Radial Static-Pressure Gradients

A radial static-pressure gradient at the exit of the core
nozzles (dual-flow mixing plane) existed for the core-only runs
as showo in Figure 4-27. Confi gurations I and II had the same
short plug while Configurations III ana IV had the longer plug
which also had less curvature. The splitter (Configuration I) has
a pressure gradient of approximately 1 percent which is due to the
curvature effect of the plug causing the flow to accelerate
lo-ally along the plug surface. Configuration II has a stronger
gradient of approximately 2 percent from the plug to mid-lobe
region but from the mid-lobe to the lobe-tip region the static
pressure is constant. Configurations III and IV have a 1 percent
pressure gradient from -.-he plug to the mid-lobe region, which is
the same'as the splitter, but with a Mug of less curvature. The
gradient from mid-lobe to lobe-tip} for the III and IV is roughly
constant, this was also true for Configuration II.

The static-pressure gradient from the plug to mid-lobe region
decreased from approximately 2 percent during core-only runs to
approximatel- 1 percent in the dual-flow mode (see Figure 4-28).
The gradient .,_n the mid-lobe to the lobe-tip region changed from
constant in the core-only to approximately 1 percent in dual-flow.
A sharp gradient of 1-112 percent occurred from the lobe-tip to
the fan-shroud region in dual flow. The overall static-pressure
gradient is approximately 1 percent less for the sea-level-static
runs than for the cruise-design-point runs. The pressure gradient
is about 112 percent stronger from the cold to hot conditions at
sea-level static but nearly the same at the cruise-design-point
cold to hot conditions.

A comparison of the static-pressure gradients of each of the
configurations at sea-level static and the cruise-design point is
presented in Figures 4-29 and 4-30. Configuration III (long-
parallel mixer) has a lower static-pressure gradient at both sea-
level static and cruise-design point than the other mixer
configurations. The mixer configuration gradients are slightly
greater than the standard compound at sea-level static but are
about the same at the cruise-design point.

Radial static-pressure gradients at off-design performance
points are shown in Figures 4-31 and 4-32 for the standard compound
(Configuration I) and the short parallel mixer (Configuration II)
respectively. In both configurations, a larger static-pressure
gradient occurs when the total-pressure ratio (PT5.2/PT14.0) is
greater than 1.0. When the total-pressure ratio is less than 1.0,
the gradient is a minimum. At a ;pressure ratio of 1.0, the core
Mach number is slightly higher than that of t.r - bypass, therefore,
the core-static-pressure is slightly lower, 	 some pressure
gradient to occur as shown in Figures 4-31 and 4-32. As the pres-
sure ratio increases to a value greater than 1.0, the core Mach
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Figure 4-31. Mixing Plane Radial Static Pressure Profiles,
j	 Off-Design, Configuration I.
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Profiles, Off-Design, Configuration II.
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number increases over the bypass Mach number and the static-
pressure (radient increases. At total-pressure ratios less than
1.0, the bypass Mach number becomes greater than the core Piach
number and the static pressure in each stream approaches the same
value. This decreases the static pressure gradient as shown in
Figures 4-31 and 4-32.

4.3.5 Acoustic Surveys Measured Noise Data Scaled to Full-Size
Nozz e

The r.easured noise levels for each of the six scale model
nozzle configurations are presented in Appendix D. The measured
static noise data shows conclusively that Configuration II (short
parallel mixer and long mixing duct) provided the lowest noise
levels of the six configurations tested.

In order to provide additional information regarding the
relative acoustic performance of the six nozzle configurations
tested, the scale model noise data was scaled to a full size nozzle
in flight and the resultant jet noise levels were "flown" simulat-
ing a FAR Part 36 takeoff noise certification procedure.

4.3.5.1 Scaling Procedure

The scaling procedure utilizod the jet noise prediction methods
of References 20 and 21. In this procedure, the scale model nozzle
static jet noise levels were predicted based upon the known operat-
ing conditions for the nozzle. The predicted jet noise directivity
levels were then compared to the measured noise directivity levels
and a correlation, i.e., delta dB, between predicted and measured
levels was established for each one-third octave frequency at
each microphone location.

A jet noise prediction for the full-size nozzle configurations
was then performed based upon the full-size nozzle geometry and
operating conditions of each nozzle in flight. The necessary
shift in frequency of the peak jet noise levels was also estab-
lished. The resultant full-size nozzle jet noise levels were
determined by algebraically adding the corrections established
between the predicted versus measured scale model static noise
levels to the predicted levels for the full-size nozzle, accounting
for the necessary frequency shift. The scaling procedure is sum-
marized in Figure 4-33.

Figur^ 4-34 presents a typical result of the scaling proce-
dure in which the measured noise data for Configuration II has been
sealed to a full-size nozzle configuration in flight. The data
shown is based on the measured sea level. static takeoff condition
and is for microphone location 6 (1.04 Radians [60°) from the jet
exhaust centerline). A similar scaling result was accomplished
for each microphone location.
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4.3.5.2 Flfover Procedure

The resultant full-size nozzle jet noise levels were "flown"
by computer program to determine the relative jet noise levels
corresponding to the FAR Part 36 takeoff certification condition
in terms of effective perceived noise level (EPNdB) for each nozzle
configuration, see Reference 22.

Figure 4-3 14 presents a summary of the flyover prediction pro-
cedure. Th y : full-size nozzle jet noise directivity levels were
"flown" along an assumed aircraft takeoff flight path. The aircraft
flight profile used in the flyover prediction was the reference
takeoff profile of the QCGAT conceptual aircraft. The aircraft
flight profile, i.e. climb angle, was adjusted from the reference
climb angle as a function of the measured nozzle thrust coefficient
for each nozzle configuration by the following expression:

Sin rx	
(F ID AGW	 FID + Sin ,aR

where:

cr	 is the aircraft climb angle

F ID	 is the reference thrust

CF	is the nozzle thrust coefficient

AGt9	 is the aircraft gross weight

,L R	 is the reference climb angle

The re;3ults of the flyover noise analysis in the form of the
relative jet noise level reductions in units of EPNdB for each
mixer nozzle configuration is shown in Figure 4-36. The relative
jet noise reductions are references: to the compound nozzle with
assumed zero percent mixing, i.e., evaluated acoustically as a
co-annular system.

The results of the flyover analysis for the scaled up full-
size nozzle configurations confirm the previous conclusions that
nozzle configuration II will provide the lowest jet noise levels
of the six ,nozzle configurations tested. This conclusion, combined
with the superior sea level static aerodynamic performance for
configuration II, resulted in this configuration being selected
for use on the QCGAT engine.
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4.4 Exit surveys	 ORIGINAL PAGE 13

4.4.1 Contour Plots 	
OF POOR QL ALITy

A 0. 1)2-Radian ( thirty-degree) pie-shaped segment of the
exhaust duct at the exit plane was surveyed for the tested con-
figurations at the sea-level-static take-off and cruise-design
points. Since the sea-level-static take-off and cruise-design
point surveys were basically identical, only the sea-level-static
take-off contours will be discussed in detail in this section
with comparison of the surveys for both conditions covered in a
subsequent section.

Contour maps of total pressure ratio, total temperature ratio,
and velbc^ty ratio for Configurations I through IV are presented
in Figures 4-37, 4-38 and 4-39, respectively. The survey plots of
the mixer configurations (II, III and IV) bound the region
between the centerlines of two core lobes.

A value for the total pressure split (PTl g . /PT5.2) at the
rating station is provided along with the total emperature split
(TT14.0/TT5.2) and the core critical velocity value (acr5.2) for
reference.

The standard-compound (Configuraticn I) exhibited large
isobar regions for the core and bypass flows at the nozzle exit.
This can be seen in Figure 4-37. From the contour values, the
bypass loss would be estimated at 0.7 percent and the core loss at
about 1.0 E.)ercent. This agrees well with the thrust data results
which will be covered in a later section. A small annular region
of apparent mixing occurred between the core and bypass regions.
In Configurations II and III (parallel mixers) core flow was
moved radially outward into the shroud region while 'bypass flow
was moved radially inward towards the hub region. Configuration
IV (radial mixer) shows the same trend as the parallel mixers but
to a larger degree. This would be expected from a geometry com-
parison as shown earlier in Figure 3-45.

Total temperature contours exhibit the same trends described
above for the total pressure contours but the trends are more
pronounced as shown in Figure 4-38. Again, a small thermal-mixing
region occurs for the standard compound with a large high tempera-
ture core center region present. The parallel mixers reduced the
peak temperature by approximately 25 percent compared to the
standard compound and the radial mixers whic'-, reduced the peak
temperature by approximately 47.5 percent. The peak temperatures
of the parallel mixers occurred in the hub region over- a very
small area, whereas the radial mixer peak temperature occurred as
an annular mid-region of significant area. Hot-core flow regions
also occurred in the shroud regions of the parallel mixers
indicating core flow might have been exiting the mixer lobes with
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an outward radial velocity component. Configuration II appears
to have the smallest hot temperature zones and the smallest cold
temperature zones, indicating more thermal mixing than in the
other configurations.

The effects of thermal mixing and pressure loss determine
the velocity levels at the nozzle exit as shown in Figure 4-39.
As expected, the standard compound has two large velocity regions,
the high core velocity at the center and the lower bypass velocity
in the annular shroud region. All the mixer configurations
reduced the peak velocity region size and level relative to the
standard compound. The core critical velocity at rating station
5.2 at the sea-level-static setting is approximately 488 m/sec
(1600 ft/sec). Therefore, the mixer configuration peak velocities
were about 30.5 m/sec (100 ft/sec) lower than the standard com-
pound and were considerably reduced in size as shown in Figure
4 -39.

Two additional mixing duct lengths with ratios of X/D = 0.50
and 0.63 were tested with the short parallel mixer to compare to
the long mixing duct (X/D = 0.75) results of Configuration II.
Comparisons of PT , TI., and velocity are shown in Figures 4-40,
4-41 and 4-42, respectively. The total pressure contours are
included for completeness (see Figure 4-40), but the comparison
is aLfected by the rating station total pressure split which var-
ied her.ween the configurations by as much as one percent. No
iramediar-e conclusion can be obtained based on the pressure con-
tours. However, in Figure 4-41, Configuration II has a smaller
high temperature .region and smaller cold temperature region, indi-
cating a higher degree of thermal mixing than Configurations V or
VI. Velocity contours are similar for all three mixing duct lengths,
(see Figu:-e 4-42). The shorter duct (Configuration V) has slightly
larger high velocity zones at the shroud an.. in the mid-region.
Configuration II has lower velocity zones at the hub and mid-
region than V and VI, thus Configuration II appears to have
slightly improved mixing due to the increased length over the
other mixing ducts.

4.4.2 Radial Profiles

Total temperature contour plots for the sea-level-static
take-off power setting were presented in the previous section.
The cruise design point contours were essentially the same, as can
be seen by comparing the radial temperature profiles at 0 1 (core
lobe centerline position), 6°, and 15 1 (bypass-lobe centerline
posit.ion) as shown in Figure 4-43. The radial profiles are
essentially the same at each of the three circumferential posi-
tions; thus the level of thermal mixing appears to have remained
the same between nozzle pressure ratio settings of 1.4 and 2.4.
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The integrated exit total temperature was based on the ten
temperature elements recorded on the survey rake side without
pressure re ►dings. The five thermocouples located on the same side
of tic rake as the total pressures were used for backup thermo-
couples and a symmetry check. During the testing, all of the
thermocouples remained operational. The set of five backup
thermccouples was recorded but only used for a symmetry check.
A comparison of total-temperature radial profiles on both sides of
the rzke indicated the exit nozzle temperature contours were
symmetric ah shown in Figures 4 -44, 4 -45 and 4-46 for Configura-
tions II, I I, and IV, respectively. Configuration IV, the radial
mixer, had a he largest deviations on the radial profiles. The
g ood c,egree of radial profile agreement on both sides of the
rake indicate that the integrated total temperatures are a good
representation of the entire nozzle exit.

4.4.3 Tested Versus Predicted Nozzle Exit Integrated Radial
Profiles

Tested and predicted total temperatures and velocities at the
nozzle exit were integrated circumferentially to obtain radial
profiles. The mixing-analysis prediction accuracy is questionable
in hie hly accelerating, high Poach number flow fields. (The
prediction procedure, however, appears to be valid with some
modifications.) Since the standard compound system produces a
symmetric f ow field, the circumforentially-integrated radial
profile: is the best representation of the radial profile. The
standard compound system, therefore, piovides a comparison of the
basic: mixinw between predicted and tested data. The predicted
temperature profile at the nozzle exit indicates a larger degree
Of miXLng than the tested profile as shown in Figure 4-47. As
shown in Pioure 4-48, the predicted velocity profile is essentially
linear from the peak core valii to the shroud, whereas the test
data indicates that two separate velocity streams still exist
with a small mixing zone between them. At this point, it is uncer-
tain Ls to whether the static pressure gradient, the temperature
mixini or the high Poach rumber region is the cause of the poor vel-
ocity agreei.ient at the nozzle exit. To remove the effect of the
tempeiature profile difference between test and predicted, the
predicted velocity profile was corrected by the square root of the
measured to predicted temperature ratio. The resulting velocity
profile as shown in Figure 4-48 is in fair agreement with the meas-
ured %olocit:.y profile. Therefore, it appears the predicted temper-
ature mixing at the nozzle exit is not valid due to a high amount
of mining occurrin g in the accelerating region of the prediction
analysis. however, as shown earlier. in Figure 4-47, the tempera-
ture }rofile at the end of the constant area mixing duct is in
good Lgreemont with the measured profile characteristic. On
this lasis, the mixing analysis appears to be valid in the region
of lov Mach number up to the mixing duct exit, but predicts
cxcossive mixing through the highly accelerating region. A better
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match of the mixing-duct exit profile with the measured data
might 'a oUtained by adjusting the input turbulence level mixing
length or initial static pressure gradients. Integrated radial
temperature and velocity profiles for the mixer configurations
(II, [II, and IV) are presented in Figures 4-49, 4-50 and 4-51.
In tho parallel mixers, Figure 4-49 and 4-50, the test data
indicates less hot flow occurred in the mid region than was
predicted and more hot flow occurred aL the hub and shroud thin
predicted.

The radial configuration (see Figure 4-51) produced a larger
concentration of high temperature in the upper mid-region than
was predict.d and a lower amount of hot flow at the shroud and in
the kl,ib region. Some of the mixer temperature difference between
tested and )redicted data could be caused by flow angle at the
mixing plan: which was input axially into the mixing-analysis
prg(jr.Lm. This may not have been the case as was discussed earlier
in Section •1.4.1.

Tested versus predi,;ted results indicate some additional work
is required in the analysis section to obtain better agreement
with test data.

4.5 nixing Efficiency Determination

Mixing efficiency is the measure of the percentage of actual
thermal mixing thrust gain to the ideal thermal mixing gain as
definod below:

n mi x	 FACT - 
F0 

%	 _ ( CT HOT - C T COLD) meas .
_	 (18)

F100%	 F0%	 (CT 100% - CT COLD) meas.
IDEAL

This reduces to:

n mi x y TT	 V TT AVE
(19)

V ^TT 'MIX - tT AVE

whore	 TT = measured exit temperature

TT AVE = momentum a ,.,araged inlet temperature

TT MIX = energy deri;rad inlet temperature
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Therefore, mixing efficiency can be obtained from measured thrust
data, or measured exit temperature. Mixing efficiencies calcu-
lated by bath methods have been shown versus Frost's interface
function ii. Section 3.3.3.

Frost's interface function was defined utilizing a configura-
tion with io centerbody. The correlating diameter in the inter-
face function, therefore, was the mixing duct inlet diameter.
However, in this test a centerbody was used and several appropri-
ate diameter definitions were possible, such as the egU4.valent
area diameter, the hydraulic diameter, and the mixing-duct
shroud diameter. The mixing efficiencies were plotted versus
interface functions with eac:i of the above diameter definitions
and the result was that the data best correlated when plotted
versus the hydraulic diameter as shown in Figure 4-52. Mixing
efficiencies derived from measured exit temperatures agreed well
with Frost's mixing curve for the configurations I, II, V, VI
while mixing efficiencies derived from measured thrust were
:Tightly btlow the curve but showed the same trends. Based on a
thrust, measurement accuracy of +0.25 percent each, for the hot and
cold .3ata points, the error on thrust-derived mixing-efficiency
is +15 percent at the cruise design joint and +24 percent at the
SLS take-off condition. Based on arating station temperature
measurement error of +2 degrees and an exit plane temperature mea-
surement and integration error of +5 degrees, the measured temper-
ature cierivod mixing efficiency error would be about +10 percent
at both SLS and the cruise design point. The majority of the data
scatter falls within these limits.

The effc]ct of temperature ratio between the hot and cold
flow .3treams on the mixing efficiency was investigated during the
testing. Configuration II was run at a selected pressure-ratio
condition far a set of three different temperature ratios, i.e.,
2.5, 2.0, aad 1.5. Mixing efficiency remained relatively constant
as te:nperatare ratio varied (shown in Table 4-12) . The low thrust-
deriv, p d mixing efficiency at the 1.5 temperature ratio can be
explained b,, the measurement error band. The CFT measurement
error of +0.0035 is essentially equal to the calculated ideal gain
Of ACI'T IDEAL = 0.0041; therefore, the derived mixing efficiency
for that point was ignored. Results are based on only three
data ;)oints; thus, additional testing is recommended to verify

lthat ;, zing efficiency and total temperature ratio are independent.
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TABLE 4-12. TEMPERATURE RATIO EFFECT ON MIXING EFFICIENCY.

SHORT PARALLEL MIXER COMPOUND (CONFIGURATION II)

PT5.2/ p- = 2.5

PT14/P°	
= 2.0

^T5.2/TT14
nMIX(%)

(Measured Thrust)
11MIX M

(Measured Exit Temp.)

2.5 72 85

2.0 81 73

1.5 117 87

4.6 T hrust Coefficient Comparison

Tested cold-and hot-flow thrust coefficients for configura-
tions (I through VI) at the sea-level-static take-off and cruise-
design points are presented in Table 4-13. The hot-flow thrust-
coefficient predictions based on predicted losses and 0.75-percent
mixing were met by each of the mixer-compound exhaust systems at
both flight conditions. At the sea-level-static point, Configura-
tion II had the maximum performance with a C k. = 0.9932. Configur-
ation II's poorer cold flow performance (indicative of higher
pressure losses) was offset by the maximum gain cold to hot,
indicative of producing the best thermal mixing. At the cruise
design point, the radial mixer (Configuration IV) produced the
best hot performance, CF = 1.0075. However, among Configura-
tions II, V, and VI, the short parallel mixer in each case was
within 0.25 percent of the radial performance. The thrust-
coefficient data indicated Configuration II would provide the
best overall performance compromise for both sea-level static and
cruise operation.

The compound-flow-analysis (CFA) program was used to match
tested cold dual-flow-thrust coefficients at design and off-design
point, utilizing both the procedure discussed in Section 4.2.3
aisd the pressure loss results to be presented later. The CFA
progr«m matched the cold-thrust-coefficient data within 0.1
percent at design and off-design points for each of the mixer
conficurations as shown in Table 4-14.

Tlie mixing efficiency wa:; varied (while maintaining the loss
models derived from cold data) in order to match the hot flow
performance matrices of Configurations I and II. Both configura-
tions, I and II, were matched to their performance test data
within 0.5 percent with a single mixing efficiency value, except
for two low pressure-ratio points where measurement error becomes
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TABLE 4-13. THRUST COEFFICIENT COMPARISON.

Flight

lConfiguration i

CF CF AC 
Condition (Cold) (Hot) (Hot-Cold)

Predicted 0.9673 0.9782 0.0109

I 0.9845 0.9897 0.0052

SLS II 0.9815 0.9932 0.0117

PR 5.2 = 1.4 III 0.9836 0.9902 0.0066

PR 
14.0 

= 1.4 IV 0.9829 0.9918 0.0039

V 0.9834 0.9902 0.0068

VI 0.9831 0.9908 0.0077

Predicted 0.9829 1.0005 0.0176

CRDP I 0.9919 0.9940 0.0021

PR	 = 2.4 II 0.9896 1.0050 0.0154
5.2

PR 14 = 2.4 III 0.9906 1.0032 0.0126

IV 0.9908 1.0075 0.0167

V 0.9906 1.0068 0.0162

`II 0.9906 1.0066 0.0160
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TABLE 4-14. DUAL-COLD-FLOW THRUST-COEFFICIENT-MATCHING
WITH COMPOUND-FLOW ANALYSIS.

CRDP

Config.iration
SLS

298°K	 77°F	 Da
M - 0.8 Alt-12,192m

40K ft

CFT Match	 CFT Test CFT Match FT Test

I 0.9846 0.9845 0.9908 0.9919

II 0.9815 0.9015 0.9893 0.9896

II7 0.9836 0.9836 0.9902 0.9906

IV 0.9833 0.9829 0.9902 0.9908
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V 
-

.

quite larc,.e (see Table 4 . 15). The standard-compound system was
rr,_-tched tc the sixteen-point performance matrix with a mixing
effieienc} of 20 percent. A mixing eftic: ienQy of 65 percent
was required to best match the Configuration II performance matrix.
Thrust measurements used for performance evaluation were obtained
with the Eurvey rake removed. Thrust measurements were also
taken with the survey rake in place during each exit survey run.
An overall average increase in thrust coefficient of 0.4 percent
was observed with the s , irvey rake placed at the exit of the
nozzle. Due to the apparent influence of the exit survey rake,
this data was not used in establishing the absolute performance
levels. However, it was used to substantiate tested performance
di£f 2rences.

The effect of temperature ratio on the thrust level was
investigated during the testing. Configuration II was run at a
single pressure-ratio setting and thrust was measured at tempera-
ture ratios of 2.5, 2.0, and 1.5. Absc-ute measured thrust levels
decreased with decreasing temperature ratio as shown in Figure
4-53. Exit surveys were taken during these runs; therefore, the
measured thrust levels included the effect of the survey rake.
The increment of thrust gain (hot to cold) with the survey rake
effe,.t removed indi, , ,-tes that the thrust gain is reduced by one-
half in going from a temperature ratio of 2.5 to 1.9.

Comparing measured to ideal thrust gain versus temperature
ratio produces the result that mixing efficiency remains constant
(see Figure 4-53, nmix values). Mixing efficiencies derived
from measured exit temperatures indicate the same trend.

4.7 Total Pressure Loss

4.7.1 Col .] Flow Derived Pressure Losses

Initially, the core-only thrust data was used to obtain the
core-pressure losses. Pressure losses derived in this manner
for Configuration I (standard compound) correlated linearly with
corrected flow squared as would be expected. Some deviation from
a linear relationship occurred at the two higher flow points
where the Mach number at the rating station was greater than 0.7,
and the rig adapter was close to choking (see Figure 4-54). Since
two of the three core-only pressure-ratios for the mixer con-
figurations choked locally through the mixer lobes, the unchoked
pres:^ure-ratio point was the only point reduced to obtain a
pressure-loss value. For these mixer runs, the rating station
Mach number was about 0.5, but the Mach number somewhere through
the lobes was much higher. For one of the mixer-core choked
runs, the _sating-station Mach number was about 0.6. Based on
tnese single core-only pressure-ratio runs, the mixer-core losses
were appro::imately 3.5 percent at the cruise-design-point
corrected flow. However, when this value of ccre loss is usad
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TABLE 4-15. DUAL- HOT-FLOW THRUST-COEFFICIENT-MATCHING
WITH COMPOUND-FLOW ANALYSIS

STANDARD COMPOUND (CONFIGURATION I)

CF/CFA CFA-Test

pT5.2 /p. PT14.O /P CF Test (n mix` 2Q%) Test

1.2 1.2 0.9832 0.9811 -0.0021

1.4 1.4 0.9897 0.9893 -0.0004
1.6 1.6 0.9904 0.9920 0.0016
2.0 2.0 0,9916 0.9959 0.0043
2.4 2.4 0.9940 0.9968 0.0028
1.3 1.2 0.9843 0.9692 -0.0153
1.4 1.2 0.9855 0.9542 -0.0318
1.5 1.4 0.9850 0.9848 -0.0002
1.6 1.4 0.9837 0.9782 -0.0056
1.4 1.6 0.9924 0.9872 -0.0052
1„8 1.6 0.9864 0.9858 -0.0006
1.8 2.0 0.9946 0.9921 -0.0025
2.2 2.0 0.9925 0.9930 0.0005
2.0 2.4 0.9954 -- --
2.2 2.4 0.9939 0.9939 0.0000
2.6 2.4 0.9943 0.9953 0.0010
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TABLI' 4-15. DUAL-HOT-FLOW THRUST-COEFFICIZNT-MATCHING
WITH COMPOUND-FLOW ANALISIS. (CONTD)

:HORT PARALLEL MIXER COMPOUND (CONFIGURATION II)

CF/CFA CFA-Test

PT5.2/Pm PT14.0 /Poo CF Test (nmix " 658) Test

1.2 1.2 0.9922 0.9814 -0.0109

1.4 1.4 0.9932 0.9927 -0.0005

1.6 1.6 0.9956 0.9969 0.0013

2.0 2.0 1.0016 1.0032 0.0016

2.4 2.4 1.0049 1.0059 0.0010

.3 1.2 0.9832 0.9668 -0.0167

1.5 1.4 0.9914 0.9876 -0.0038

1.6 1.4 0.9796 0.9801 0.0005

1.4 1.6 0.9931 0.9937 0.0006

1.8 1.6 0.9950 0.9903 -0.0047

2.0 1.6 0.9786 0.9812 0.0025

1.8 2.0 0.9964 0.9993 0.0029

2.5 2.0 0.9911 0.9927 0.0016

2.2 2.4 1.0020 1.00205 0.0005

2.6 2.4 1.0076 1.0036 -0.0040

2.9 2.4 0.9992 0.-980 -0.0012
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for the mix ,?r -onfigurations, the predicted dual cold-flow thrust-
coefficient results were much lower than tested. Since the
mixer--core-only runs were operated at a very high Mach number
local.ty through the lobes, the mixer-cone-only pressure loss is
quest.onabl-i when ratioed down to a lower corrected flow. There-
fore, the m xer-core-only losses were derived from the dual
cold-flow tj^rust coefficients as described earlier in Section
4.2.3. Coll- thrust-^.oefficient matching results were presented
earlier in :section 4.6. Total-pressure losses based on matching
cold-dual-flow-thrust coefficients are shown in Table 4-16.

TABLE 4-16. CRUISE DESIGN POINT PRESSURE LOSSES.

Configuration

AP/PT

Core Bypass Mixing Duct

1 0.0090 0.0048 0.0023

II 0.0225 0.0048 0.0023

III 0.0135 0.0048 0.0023

IV 0.0135 0.0048 0.0023

4.7.2 Tested Versus Predictc-d Losses

Tested and predicted losses for the core nozzles are ratioed
to a Iredicted convergent-nozzle loss and compared to a semi-
empirical loss correlation previously discussed in Section 3.3.1
(see Figure 4-55). The convergent nozzle has an exit equivalent
hydraLlic diameter of 1.0 (therefore, no centerbody), and, in the
caso oL a diffusing core, it includes the diffusion loss based on
an area ratio of a conical diffuser. Tested Configurations I, III,
and IV fall very close to the semi-empirical curve while Config-
uration II has a somewhat higher loss. Tested losses are lower
than the predicted values for all the mixer configurations= how-
ever, the 3-D viscous analysis predicted the same loss ranking as
the test results.

Tested versus predicted losses for the final mixer configura-
tion are presented in Table 4-17 for the cruise-design-point and
sea-level-static-•takeoff point.

4.8  C,)m ponc^nt P rformance Maps

4.8.1 'Pest Maps

T^ie sixteen-point data matrix tested for Configuration II
was us,.d to generate performance characteristic maps required for
evaluating engine-cycle match. The initial predicted-flow and
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thrust-coefficient maps were used as a base reference from which
tested flow and thrust deviation values were calculated. correct-
ed flow deviations were generated and lines of constant bypass -
pressure ratio were plotted as a function of core-pressure ratio
(see Figures 4-56 and 4-57 for the core and bypass, respectively).
The flow-deviation lines were then crossplotted and interpolated
to generate a uniform map. The thrust coefficient deviation
values generated in the same manner as above relative to the
predicted map along with calculated thrust- coefficient-deviation
values from the compound-flow-analysis program updated with the
loss and mixing models discussed in earlier sections,are shown in
Figure 4-58.

The deviation values derived from test data are a constant
1.25 percent higher than the predicted levels except in the low-
pressure-ratio range where the deviation is greater than 1.25
percent . Thrust coefficients calculated with the compound-flow-
analysis program produced a constant 1.25 percent deviation level
over the full range of pressure ratios tested. Because of the
increased thrust-measurement error at lower pressure ratios, a
thrust scalar of 1.25 percent was applied to the full predicted
map. This allows for measured thrust error margin at the low-
pressure-ratio range and provides a thrust map that is conserva-
tive in this range.

Corrected flow maps are presented in Figures 4-59 and 4-60
along with the actual test data points. Limit lines due to static
pressure and splitter-area choking are included. The static-
pressure-limit line corresponds to no flow for one-dimensional-
inviscid analysis. Also, the approximate location where the rig-
core-sonic nozzle unchokes is shown to indicate the pressure ratio
boundaries of the test. The thrust-coefficient map is presented
in Figure 4-61. As discussed above, the map is lower than the
test data at the low-pressure-ratio end, but agrees well everywhere
else.

4.8.2 Tested Versus Predicted Maps

The predicted core- and bypass-corrected-flow characteristics
matched the tested characteristics exceptionally well (see Figure
4-62). Throughout the performance matrix, the measured core flow
was lower than predicted and the bypass measured flow was higher
than predicted. At both the cruise design point and the off-
design sea-level-static takeoff point the predicted corrected-
flow levels were within 5 percent of measured levels as shown in
Table 4-18.

Tested thrust coefficient-levels were higher than predicted
due to lower-than-predicted pressure losses (see Figure 4-63).
The characteristic shapes of the predicted thrust-coefficient
curves matched very close to the tested characteristics as indi-
cated earlier by the constant-thrust scalar required to match
the ; predicted levels to the test data.
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TABLE 4-18. PERCENT DIFFERENCES OF MEASURED TO PREDICTED
CORRECTED FLOW LEVELS.

• ` WCorr ) Predi ,;ted - (WCorr )Test]/(  Corr ) Test
Flight	 — -

Condition	 Core	 Bypass

Sea-Level-Static I 	 +1.5%	 I	 -4.1%
Takeoff

Cruise Design	 1	 +3.6%	 1
	 -2.6%

Overall, the predicted compound-flow-analysis results had the
following characteristics:

(a) matched tested flow map characteristic shapes,

(b) predicted the inlet-plane flow match within
5 percent at cruise and sea level,

(c) rztched tested thrust-coefficient characteristics.

The predicted flow maps were scaled using the inspected test
areas and tested flow coefficients. Agreement with the tested
core-corrected flows is excellent (see Figure 4-64). Scaled
bypass corrected flow matches the test data well for total pres-
sure Split (PT5.2/"T1l4 .1.0) but deviates as the pressure split
becomes >1.0 as is aiso shown in Figure 4-64. The bypass-flow
error may Le due to differences between the predicted loss model
a.id the actual test losses or the exit-flow coefficient definition
which is based on equal-pressure-ratio (PT Core/PT Bypass - 1.0)data points.

The effect of pressure loss differences between predicted and
tested data was remc 3ed by running the performance map data points
through the compound-flow-analysis program with the tested areas,
flow (;oeff.icients, and pressure loss model as discussed in
previous sections. Updating the predicted pressure-loss model
did not prcduce the required match with test data as shown in
Figures 4-65 and 4-66. However, the pressure loss update did
result in good agreement with the tested thrust coefficients (see
Figure 4-67.) These results indicate an exit flow coefficient map
with :lines )f constant bypass pressure ratio may be required i •, the
prediction inalysis to improve off-design matching, but design-
point flow latching and performance level capability produce good
agreement with test results.
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SECTION V

FULL-SCALE AREA SIZING

5.0 QCGAT CYCLE OPTIMIZATION WITH SHORT PARALLEL IIIXER-COMPOU14D
EXHAUST SYSTEM

Sind: the tested flow maps presented earlier in Section 4.8.1
varied from the predicted maps, an area scaling analysis was
required in order to match the exhaust system to the engine cycle
at the dual-nozzle design point. The scaling procedure consisted
of varying the core, bypass, and exit areas by +5 percent which
produces core- and bypass-flow deviations from tie desired engine
cycle mat(:h point. Typical core- and bypass-flow-deviation lines
for a given bypass-area scalar are presented in Figures 5-1 and 5-2.
From these curves, intersection points of zero-flow deviation are
determined which define zero-flow deviation lines for constant
bypass-area scalars as a function of core- and exit-area scalars.
(See Figure 5-3.) Intersection of the bypass- and core zero-flow
deviation lines defines the exit-area scalar and a locus set of
core- and bypass-area scalars that will match the desired engine
cycle point (see Figure 5-3). The selected full-scale core-area
scalar wa:i chosen to match the test-model nominal core area, thus
the full-:scale mixer geometry could be scaled directly from the
mixer-model scale coordinates and the full-scale core-stream
aerodynam,c contours would be identical to those tested. Selec-
tion of the core-area scalar defines the bypass-area scalar as
shown in Figure 5-3.

The area scalars determined in the above manner were applied
to the tested maps which were then run through the engine-cycle
analysis } grogram. Results of the engine cycle analysis on the
dual-nozzle cruise-design point are shown in Table 5-1. Fan
speed (Nl , high-pressure compressor speed (N2) and the turbine
inlet temperature (TT4.1) matched the dual-nozzle design point
as indicated by the comparison of column c with column a.
Matching !:he mixer compound system (column c) results In a 5.4-
percent increase in thrust over the reference-coannular nozzles
(column a), and a 3.8-percent increase over the mixer-compound
Preliminary Design Review predicted levels (Column b). Also,
an improvement in TSFC of 5.4 percent over the reference
coannular nozzles and 3.2 percent over the predicted levels was
obtained. These improvements in thrust and TSFC are the result
of o f?timi::ing to the cruise-design point.

At this optimized cruise-design-point match condition, the
sea Level static performance was evaluated with the same turbine
inlet temlerature (TT4.1) as the reference coannular nozzle (see
Column f, Table 5-1) and also with the same TV 1 as the Predicted
mixer comj^ound nozzle (see Column g). The different turbine inlet
temparatuies (TT4.1) resulted from the predicted mixer compound
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nozzles (Column e) requiring a higher TT4.1 than the reference
nozzle (Column d) in order to meet sea level static thrust. At
the reference nozzle TV 1 ► the design-point match is 2.7 percent
low or. sea-level thrust tsee Column f). At the higher TT4.1 ► the
design-point match is 1.6 percent in excess of the sea-level thrust.
However, the desire was to decrease the turbine-inlet temperature
at sea level static to the level of the reference nozzles and
still meet reference-nozzle thrust. This could be accomplished in
two ways. Since there is an excess level of thrust at the cruise
design point, the cycle areas could be rematched to trade excess
cruise thrust for additional sea level static thrust. The other
alternative was to increase the sea level static exit area with
a convergent-divergent nozzle, therefore maintaining the cruise

-desigr.-point match. However, in this instance, the use of a
convergent-divergent nozzle would have required additional testing
to obtain the performance map characteristics. Since time pre

-venteck this option, the area-trade study was performed by the
engine-cycle-analysis group. The exit area was increased 2.9 per-
cent over the cruise-design-point match in order to decrease the
cruise net thrust to the 409.6 kg (903 lb) predicted level as shown
in Ficure 5-4 at an altitude condition of 12,192 m (40,000 ft).
The core-area scalar was maintained at 1.0 for the reasons dis-
cusser earlier. The bypass-area scalar was allowed to vary, but,
as shown in Figure 5-5 (sea-level conditions), decreasing the
bypass area does not produce a significant increase in thrust.
Also, in order to maintain sufficient fan-surge margin, the bypass
scalar was :hosen as 1.0. A summary of the areas from the model
test to the final sizing are shown in Table 5-2. Percent changes
are relative to tested areas.

TABLE 5-2. MODEL TEST AREA SIZING.

Match to Dual
Nozzle

Model Test Critical % Final
Areas Design Point Change I	 Sized Areas Chan

Core 1333.90 cm 1354.84 cm  1.2 1354.84 cm 1.

(201.53	 in. 2 ) (210.0	 in. 2 ) (210.0	 in. 2)

Bypass 3093.74	 cm 2948.70 cm 2 ) -4.75 2948.70 cm -4.7

(47).84	 in. 2 ) (457.05	 in. 2 ) (457.05	 in. 2)

Exit 261).35	 cm 2 2586.64 cm -1.25 2661.87 cm  1.

(40;.0	 in. 2 ) (400.93	 in. 2 ) (412.59	 in.2)
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Table 5-3 presents the results from the engine-cycle analysis
with the Final-sized areas. Cruise net thrust (Column III)
matches the Preliminary Design Review level (Column II) which is
still a 1.6-percent increase over the reference coannular nozzles.
A 1.0-percent improvement in TSFC is obtained relative to the
Preliminary Design Review level and 3.2-percent relative to the
coannular system. At sea level, the turbine inlet temperature
(TT4.1) wig s reduced to the coannular nozzles level, while thrust
was increased to the reference nozzle level (see Columns IV and
VI), resu:.ting in a 1.0-percent improvement in TSFC relative to
the reference coannular nozzle system.

The mixer-compourid-exhaust-system-design geometry finally
selected is presented in Table 5-4. Selection of the short
parallel-mixer from the model test results shortened the mixer
lobe length by 10.16 cm (4.0 in.) relative to the Nacelle PDR,
thereby reducing the exhaust system overall length by 10.16 cm
(4.0 in.).
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TABLE 5-4. QCGAT EXHAUST SYSTEM PERFORMANCE
DESIGN GEOMETRY.

Parameter Proposal
Engine

PDR
Nacelle

PDR
Nacelle

DDR

Exit area 2714.2 2619.3 2619.3 2661.9

c,n 2 	(in. 2 ) (420.7) (406.0) (406.0) (412.6)

Minimum area 2714.2 2619.3 2619.3 2661.9

C111  (in.2) (420.7) (406.0) (406.0) (412.6)

Inlet area 3922.9 4516.1 4516.1 4387.0

cm2 	(in. 2 ) (615.8) (700.0) (700.0) (680.0)

Care splitter area 13'24.5 1354.8 1354.8 1354.8

CI;1 2 	(in. 2 ) (205.3) (210.0) (210.0) (210.0)

U^ 	 << ^s	 5}5li LLei:	 azea* 48. 4 3161.3 3161 . 3032.3

C111 2 	 (.in. ` ) (410.5) (400.0) (400.0) (470.0)

Mixing duct length 35.56 00.96 60.96 60.96
cm	 (in.) (14.0) (24.0) (24.0) (24.0)

Nozzle length 30.48 40.64 40.64 40.64
cm	 (in.) (12.0) (16.0) (16.0) (16.0)

Labe length** 50.2 51.3 61.5 51.3
Cm	 (in.) (20.0) (20.2) (24.2) (20.2)

'rc)tal	 length** 116.8 152.9 163.1 152.9
cm	 (in.) (46.0) (60.2) (64.2) (60.2)

LU, bc number 9 12 12 12

*Includes splitter base arod.
**Labe and total length relative to turbine rotor exit.
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SECTIOI4 VI

SUMMARY OF RESULTS

6.0 SUMARY OF RESULTS

o	 The short parallel mixer compound exhaust system
(Configuration II) provides the best overall exhaust
system performance for the OCGAT Engine. The cruise
performance exceeds the design goal by 0.45 points
(ACFT = 0.0045) and the sea level static performance
is the best of all the tested systems exceeding the
design goal by 1.5 points (ACFT = 0.0150).

o	 The acoustic data shows conclusively that the short
parallel mixer compound exhaust system (Configuration
II) provided the lowest relative noise levels of the
six nozzle configurations tested. This results in a
maximum tone corrected perceived noise level reduc-
tion of 4.1 PI4dBt and a predicted flyover jet noise
reduction of 5.1 EPNdB. The jet-noise reduction was
found to be proportional to the achieved mixing
efficiency.

o	 Selection of the short parallel mixer compound exhaust
system (Configuration II) for the QCGAT Engine yields
a potential cruise-thrust increase of 5.4 percent and
cruise TSFC reduction of 5.4 percent. however, the
final exhaust system engine cycle area optimization
resulted in a TSFC reduction 3.2 percent at cruise
and a 1.0 percent at sea-level. The cruise thrust was
increased by 1.6 percent while the takeoff temperature
was reduced by 11.7°C (21.1°F) at nominally the same
takeoff thrust as the reference nozzles.

o	 The 3-D-viscous compressible flow analysis predicted
the same total-pressure loss ranking of the mixer
nozzles as derived from the test data. The turbulent
mixing model analysis overuredicted the amount of
thermal mixing.
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SECTION VII

RECOMMENDATIONS

7.0 RECOMMENDATIONS

o	 It is recommended that the short parallel mixer
compound exhaust system (Configuration II) be used
for the QCGAT nacelle. The recommended exhaust
system areas are:

Core Area	 = 1354.84 cm 2 (210.00 in2)
Bypass Area	 2948.70 cm 2 (457.05 in2)
Exit Area	 2661.87 cm 2 (412.59 in2)

o	 It is recommended that additional testing be conducted
in which the inixinLi plane and constant-area mixing-
duct-exit plane be surveyed for both mean flow and
turbulence structure. This data would determine flow
characteristics at each of these stations and would
provide comparative data for improvement of the
analytical design and optimization tools.
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APPENDIX A

SURVEY RAKE DATA REDUCTION

STATIC PRESSURE INTERPOLATION

PSWAV = Average of Nozzle Exit-Wall Statics ti

(#161 + #162)/2.0

PS(1) = Rake Centerline Static

PS (N)	 = PS (1) + (PSWAV - PS (1) ) (0. 
3617) ( N-1)
3..9787

where N = 1, 11

TOTAL PRESSURE INTERPOLATION

PT(21) = (PT(2N+1) + PT(2N-i))/2.0

where N = 1, 5

This interpolates between the measured total pressures.

TOTAL, TEMPERATURE CORRECTION

AT 5.2 = TT5.2	 TT5.2

AT
14	

_ 
TT14	 Tai"14

where: T,4,, ) and T
T14 

are the values at the 1st rake setting

to TT5.2 and TT14 are the values at the current rake

setting.

I
TT (N) _ TTPROBE (

TT .2 - TTT14	
(TT - TT14) - LT 14

T5.2 	 T14 )
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FORMATTED VARIABLES TO BE
PUNCHED ON PAPER TAPE

*REQUIRED ONCE FOR EACH SURVEY RUN

WRITE (100)	 NS, NX, NY, ICNT, ABL, ITITL, GAM, DEGRAN,

APRIME, PSTG, RGAS, TMIX, TREF

100 POR.MAT	 (3I3, I4, F5.1, I2, F6.3, F7.2, F8.1, F7.3,

F8.0, 2F8.2)

Where:	 NS = 1

NX = 12 ti	 (No. Thetas +1)

NY = 13 ti	 (No.	 Radii +1)

ICNT = 132 ti	 (NX-1)	 (NY-1)

ABL = 12.0 ti	 (No. of Lobes)

W1 = y5.2

2
y RT 	 RT

-1	 1 5.2 + M Y-T- ^ 14.01
DEGRAN =	 . yR I	 .fir)	 )

+ My-1(M5.2 + M14.0 )(My-L 5.2	 14.0

APRIME = 494348 
( y5 Y5.2 1 ) TT5.2

PSTG =(M5.2 PT5.2 + P^14 .0 PT14 . 0 ) " '5.2

+ M14.0)

RGAS = 247174.0 in. 2 /sec t OR

MyRT'	 MyRT'

TMIX = Y-1
T1 5.2 + y-1TI14.0

AYR,	 + PAR,
y-1 5.2	 y-1 14.0

TREF = TT5.2

110TE: Prime values correspond to 1st rake setting.
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TEMP ti °R	 VELOCITY ti INiSEC

PRESS ti NF/IN2

LENGTHS ti IN.

*REQUIRED X NUMBER OF TIMES PER SURVEY RUN WHERE X = ICNT

DO 200 (J = 2, NY) u (RADII IN INCREASING ORDER)

DO 200 (I = 2, NX) ti (THETA'S IN INCREASING ORDER WHERE

INITIAL THETA IS SET TO 0.0)

WRIT; (200) L, I, J, RAD, THETA, Z, Y, X, CRMN, VELRAT, PS,

PTRAT, TTRAT

200 FORMAT (313, 7F6.3, F7.3, 2F7.4)

See Page 7 of this Attachment for sample)

Whexe:	 L = 1

I = 2, N 

J = 2, NY

RAD = PROBE RADIUS '- IN.

THETA = RAKE ANGLE 'u RADIANS

Z = SURVEY PLANE STATION

(See Page 6 of this Attachment)

Y = RAD cos 6

X = RAD sin 0

C RMN = V/V*
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Where:	 V - X'yY—I RGAS TT (1 - ( PPS)
Y-1Y

T

V* _ 2 (RGAS ) Y+T TT

and Y = f (TEMP)

VELRAT = V/V5.2

where: V*.2 = 32(RGAS ) Y5.5•2 1 TT5.2

PS = Probe Static pressure as defined on Page 1

of this attachment.

MAT = PT/PT5.2

where PT is determined from measurement and

interpolation as defined on Page 1 of this

attachment.

TTRAT = TT/TT5.2

where TT is measured temperature from

thermocouples TT1 through TT11.
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APPENDIX C

LIST OF SYMBOLS AND DEFINITIONS

acr =	 Critical Velocity	 (n3 s (IN./SEC) j

A =	 Area	 [cm2 (IN. 2 ) j

AE =	 Exit Area	 (em2 (IN. 2 ) )

A I =	 Inlet Area	 [CM2 (IN. 2 ) j

AFS =	 Full Scale Area	 [cm 2(IN,2)j

AR =	 Lobe Aspect Ratio

A t =	 Effective Area	 (C DA)	 [em2 (IN. 2 )]

AGW =	 Aircraft Gross Weight	 [kg (LBS) )

ALT =	 Altitude	 [m(FT)]

B Compound Ch:*ing Criteria

CD =	 Flow Coefficient

C DE -	 Exit Flow Coefficient

CDS =	 Splitter or Mixing Plane Flow Coefficient

C 
=	 Thrust Coefficient

CFA =	 Compound Flow Analysis

C F T =	 Total Thrust Coefficient

C
L	= Centerline

CP	 = Contact Perimeter [cm(IN.)]

C L)	 = Pressure Coefficient

C s	- Vacuum Thrust Coefficient

CRDP	 = Cruise Design Point

dB	 = Log C- '.t of Pressure

D	 = Mixing Duct Diameter [em(IN.)]
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DE	 = Diameter of Equivalent Area Circle [cm(IN.)]

DH	= Hydraulic Diameter [cm(IN.)]

DHE	 Equivalent Hydraulic Diameter [cm(IN.)J

DDR	 = Detailed Design Review

EPNdB - Effective Perceived Noise Level, dB

EPNL	 Effective Perceived Noise Level Measured in EPNdB

F	 - Actual Gross Thrust [N(LB)]

FN	= Net Thrust	 [N (LB) J

F ID	 = Ideal Thrust	 [N (LB) J

f	 = Interface Function

f/a	 = Fuel-Air Ratio

= Friction Factor

f( )	 = Functional Parameter

h	 = Lobe Height [cm (IN.) ]

H7	 = Unit of Frequency (Cvcles/Second)

K	 - Constant

KR	- Luss Ratio

L	 = Length [cm (IN.) ]

M	 = Mach Number

m	 = Mass Flow Rate [kg/s (LB/SEC) ]

N	 = Number of Lobes

N 1	= Low Rotor Speed [rad/s (rpm) ]

N 2	= high Rotor Speed [rad/s(rpm)]

NM	 = Nautical Miles

P	 = Pressure [Pa(psi)]

PDR	 = Preliminary Design Review

PEN	 = Penetration Ratio

s•

f

E
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PNdB t =	 Tone Corrected Perceived Noise Level, dB

PR =	 Pressure Ratio

PS =	 Static Pressure	 [Pa(psi)]

PSCL Static Pressure at Centerline [Pa(pai)]

PT =	 Total Pressure	 [Pa(psi)]

PTR =	 Rating Station Total Pressure [Pa(psi)]

q =	 Dynamic Pressure	 [Pa(psi))

R =	 Radius	 [cm (IN. ) ]

Rl =	 Plug Radius	 [cm(IN.)]

P .1 =	 Ambient Pressure	 [Pa(psi)]

ReD =	 Reynolds Number Based on P,?,ameter

s =	 Lobe Spacing	 [cm (IN.) ]

SLS =	 Sea Level Static

SPL =	 Sound Pressure Level --e 2 x 10 5 N/m2

SPLP , = Far-Field Sound Pressure Level, dB

SI?LFS = Full-Scale Sound Pressure Level, dB

S11 L P1	= Scale Model Sound Pressure Level, dB

SR	 - Spacing Ratio

STA	 = Station

TT	= Total Temperature	 [ °K (°R) ]

TT4.1 = Turbine Inlet Temperature [°K(°R)]

TTY	 = Total Temperature at Rig Measurement Station [°K(°R)]

T/0	 = Takeoff

TR	 = Lobe Taper. Ratio

,rSFC	 = "Thrust Specific Fuel Consumption [kg/hr/N (lb/hr/lb) ]

V	 = Velocity	 'm/s (FT/SEC) ]
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VP.	 = Velocity Ratio

w	 = Lobe Width [cm (IN,)]

W	 = Total Air Weight Flow [kg/ s (lb/sec)]

WP	 = Wetted Perimeter [cm (IN.) ]

X	 - "fixing Duct Length [Cm (IN.) ]

z	 = Axial Station Location

z C 	Characteristic Length at Onset of Coalescing Core Region

( ) 1	 Core Stream Properties

( ) 2	 Bypass Stream Properties

( ) 5.2	 "ores Nozzle Ratiny Station

( ) 14.0	
`;yt'`j~s Nozzle Ratintl Station

3-D	 i'hrec Dimensional

Y	 -	 \ntalc^	 [rad(°)l

G^

	

	 Inlet Blockage Factor

'ratio o f Speci ficis Heats

A	 ;)i t' t vrenc:e

i'ressuro Divided by Standard Sea Level Static Day
^Iressuro

11 mixPerc ont Mixiny (Mixing Efficiency)

0	 - Temperature Divided by Standard Sea Level Static Day
' ompera t tire,

^.	 )rossurc Ratio

n	 A Constant (3.14159265)

1 W	d- Hall Shear Stress [Pa (psi) ]

-- Pluci Half Anyle	 [rad (°)]

'0	 boss Coefficient
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D-1 Introduction

Six .,eparate configurations of the QCGAT 0.35 scale-model
nozzle we, •e tested at the Fluidyne Engineering Corporation's
Medicine lake hot-flow test facility. The acoustic tests were
conducted to provide information on the relative noise levels and
directivities of the six nozzle configurations under consideration.
The resultant information was used, along with the aerodynamic
performance of each nozzle, in the selection of the final nozzle
configuration for the QCGAT engine.

The acoustic test procedure and test setup were previously
defined in Section 4.1.3. In summary, six microphone locations
were utilized. The microphones were located at azimuth angles of
0.26, 0.34, 0.52, 0.69, 0.87 and 1.04 radians (15, 20, 30, 40, 50
and 60 decrees) from the nozzle-exhaust centerline at a radius of
2.44 meteis (eight feet) from the nozzle-exit plane. These micro-
phone loc«tions were denoted as microphone locations 1 through 6
respectively. A schematic diagram of the acoustic test setup was
previously presented as Figure 4-4 in Section 4.1.3.

D-2 Summary of Nozzle Operating Conditions

Acou.-tic testing was conducted at two different core- and
bypass-pressure-ratio settings. These pressure-ratio settings
simulated the sea level static takeoff and cruise-design-point
operating conditions.

A summary of the core- and bypass-pressure ratios and
temperature ratios measured at the nozzle rating station for the
sea level static takeoff and cruise operating conditions is
presented in Table D-1 for each nozzle configuration tested.

D-3 Tabulated Noise Levels for Each Nozzle Configuration

One-third octave band sound pressure levels measured at each
microphone location are presented in Tables D-2 through D-7 for
nozzle Configurations I through VI respectively. Measured levels
for both the sea level static takeoff and cruise conditions are
presented for each nozzle configuration.

The relative noise levels for each configuration were com-
pared on a relative basis to determine the configuration producing
the lowest noise levels.

Previous flyover-noise estimates for the full scale QCGAT
engine indicated that the maximum tone-corrected perceived noise
level for the jet noise occurred at an angle of approximately
1.08 radians (62 degrees) from the jet-exhaust axis.
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TAFLE D-1. SUMMARY OF SCALE MODEL NOZZLE OPERATING
CONDITIONS DURING ACOUSTIC TESTS.

I TT5.2/
Run Operating Core Bypass

TT14r	 Config. No. Condition P.R. P.R.
s

I 9 S.L.	 Static T.O. 1.415 1.452 2.509

10 Cruise 2.400 2.415 2.634

II 18 S.L.	 Static T.O. 1.387 1.414 2.487

I
19 Cruise 2.409 2.471 2.620

III
i

27 S.L.	 Static T.O. 1.403 1.432 2.460

28 Cruise 2.401 2.419 2.529
i

IV 36 S.L.	 Static T.O. 1.400 1.424 2.491

37 Cruise 2.393 2.409 2.626

V 42 S.L.	 Static T.O. 1.389 1.424 2.522

i 43 Cruise 2.400 2.425 2.681

I	 VI 48 S.L.	 Static 'r.o. 1.390 1.429 2.532

49 Cruise 2.412 2.434 2.663
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F Ln X r• '/) a . A.... 0000 00 0000 000000........ .0000 .....v

W	 O ••YANA• •YNY •tYN NNY••YANYNYN•NN••AYAww
E-4 N	 ai .. • .w	 .y.^ A.^^y. •y.̂ ^` . gyp r.. •y.̂ y^ .^y.. •t• . M.^.1{^^	 'Y• U •Y•N^1^NfY.N+NN^N•M•1+1111•I.M•fR1^19M1^N^^NN^N^.A.^.~iw^ffY111^

HH 11

O ro
HIMU O 	1^i

	

as  a	 b

N
W O t7az
wa
Ln w

o AO n
z_ m

	

A I-+ C1r 	 • NY • fNA YMN • tYYY •NYAIOA ••NAtY • •NY•aA

	

Q	 ` ="as aaa-ZauMMS, leseittSszaaazz.N- mrb

	

U z	 . ..	 . ... .... ..... ...... .0.061".

	

LnA	 •YAN • AANA•YNNA• • •• •NNNYYNAYNNNA • •YI.1 •H
Q O

acts w^iA^aw^^isM.A..•i^^.M^w^^^^^^.^^^^.AiN^N^.Mi

0 •N •• • IYN^• fAYpYN •NYYN• •yA^•AfAA^AfNNYN^NyI.9NN^•

	

Q	 ;y H =.A• = gyp .Yid.r^~i1"Ni	 ....Ai^^.•^•^^•^.Y.^•^A^NN^^•M.

	

N F F	 ^. F .4. ..^...w . .0600... 0606.... 0606... 0606..

	

U	 D Q •AY•N • YNMAYN•NAAfNAIAfY•NfYYN111•Y ••NY01aP	A ^ O	 U 
UO 

1•i •• ' ^P1 •^ •gn1PNNNNNN ^aza^t^^^c^c^^:==aNNN^^
	as W	 H a •+...•.•^^...+.~+.00iww•~i^.~..w. ............. 0606...

!:Q H z t^ W NN • •YYNYNYN ••• AMY •YNM • •w•fN• NYANafYY^ .^. A ^ z N A	 •A 1..	 1y

	

F F	 OLn x •••• ....w...... 0606 www ..w 0606..... 	 .........

	

W	 LL .Y AYA fNNOO YY •r• • 1Y•a0YOd1NY	 •NAMOD

	

z	 r-4 O •+ Y► 	 f	 •A • Ot	 A

	

O	 (7 P.' •'•YlYY1.PIfP11•1..•i.1^1f1f..^h fl•11.11•Iw •Z^^^ fp {p
U . 0606. 0606.. w.r 0606... .• .....•.^.^.^.....• 	 .w...

a	 V;

°V' ZAA
ApUC1fi> QU 

GE I ,^^Î  s
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I R U1 x ^w^000^ tMMd1ŵ .+• •+88.+•+Y^.+a^«^^w^wp^AOlw.wi.Niw.mi W

	

W	 a	 _
ti ,.a O ^Nf10{OfwNw.^10N:Ql.w..Y.1p .Nf^NNN •Mw10^f.alf/

	

0	 U fHA:^tgw{AfwfYwl•!N:•^^1`•11`•l:a= •^••+p^p.+NNI•1^.^.•.. wwww.•*....ow.•	 ..	 W
W H .ww.«...• w -• ..• .•.«.ww.w .w. www	 ..w«w

t•	 y	

co^aws^^^i^aa ^Mti^	 i^	 •ia	 vQ	 >•.•••. Nf•I.u1Y	 u►.	
w(ta	 y	

ww. run y ww. m y^{4	 Eac
''uu 0 N

	

040.1.1	 41

an I

252



As a result, the measured noise levels for each nozzle con-
figuratioi were initially compared in terms of the tone-corrected
perceived noise level occurring at each microphone location, with
major empL axis placed on the noise level comparison at microphone
location C,, 1.04 radians (60 degrees) from the exhaust centerline.

3 perceived noise
for each nozzle con-
sea level static

perceived noise) for
Configuration II at

A surmary of the measured tone-correcte,
levels occurring at each microphone location
figuration is presented in Table D-8 for the
takeoff of erating condition.

The lowest noise levels (tone-corrected
the si:z nozzle configurations is provided by
all mi^rolhone locations.

In addition to providing the lowest measu,:d noise levels,
configuration II also provided the highest measured thrust coeffi-
cient and highest percent mixing at the sea level static takeoff
condition for the six nozzle configurations tested (refer to
Performance Summary, Table 1.1 of Section 1.4).

D-4. One-Third Octave Spectra Comparisons

The measured one-third octave band spectra levels for scale
nozzle configurations I, II, III and 1V are plotted for comparison
in Figures D-1 through D-6 for the sea level static takeoff oper-
ating condition.

Nozzle configuration II generally provides the lowest noise
levels across the entire frequency spectra for each microphone
location LDr each of the configurations compared.

The measured one-third octave band spectra levels for scale
nozzle configurations I, II, V and VI are plotted for comparison
in Figures D-7 through D-12 for the sea level static takeoff
operating condition.

Again, configuration II generally provides the lowest con-
sistent noise levels across the entire frequency spectra for each
of the configurations compared.

Conclusion

The resultant acoustic data shows conclusively that scale
model nozzle configuration II provided the lowest relative nois,'2
levels of the six nozzle configurations tested. This .fact,
combined with the superior sea level static takeoff aerodynamic
performance of configuration II, compared to the other nozzles,
resulted in the selection of configuration II for the QCGAT engine.
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TABLE D-8. SUMMARY OF ACOUSTIC TEST RESULTS.

Six Nozzle Configurations
at Sea Level Static Condition

Tone Corrected Perceived Noise Levees
(PNdBt)

Angle from Exhaust Centezl ne

0.26	 0.34	 0.52	 0 	 0.87	 1.04
Nozzle rad.	 rad.	 rad.	 rd.	 rad.	 rad.

Configuration (150)	 (200)	 (300)	 (400)	 (500)	 (600)

I 1136.8 135.6 134.7 134.0 134.7 131.9

II 132.1* 130.7* 130.8* 131.4* 132.7* 130.9*

ZII 135,.8 134.2 133.3 133.2 134.4 133.7

IV 137.6 132.2 132.0 132.4 133.2 133.2

V 134.2 132.8 1 1 2.5 133.1 134.1 131.4

VI 134.5 131.8
!
1	 132.4 132.9 134.7 132.5

*Denotes minimum noise level at each angle
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ATTACHMENT 1

HOT/COLD FLOW MODEL TESTS
TO DETERMINE STATIC PERFORMANCE

OF 35%-SCALE QCGAT EXHAUST NOZZLES

(F1uiDyne Engineering Corporation Report 1123)
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F	 dFAUIDYNE ENGINEERING CORPORATION

E

SUNIMAR:

This report presents the results of hot/cold flow model tests

conducted to determine static performance of several candidate

compound-flaw exhaust nozzles for the QCGAT engine program. The

model tests were conducted by F1uiDyne Engineering Corporation

for AiResearch under Purchase Order Nu. 1368357. The tests were

performed in the Channel 11 static thrust stand at the F1uiDyne

Medicine Lake Aerodynamic Laboratory.

The 358-scale model simulated the fan and core nozzle passages,

various mixer designs, and a mixed-flow exit duct. The interchange-

able mixers included three 12-lobed mixers and one axisymmetric

splitter (free-mixer). Each of the four mixers was tested with

core-flow-only, and in a dual-flow configuration. One selected

mixer was also tested with two variations in mixing duct length.

Tests made with core-only and dual-fl r ,r configurations determined

thrust performance, flow characteristics, and pressure distributions.

In addition, acoustic characteristics and exit pressure and tempera-

ture distributions were measured for the six dual-flow configurations.

Test results include nozzle thrust coeffi.ci ,?nts, flow rates,

nozzle discharge coefficients, effective throat areas, and pressure

and temperature distributions. Acoustic measurements were recorded

by AiResearch for separate analysis.
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FAUIDYNE ENGINEERING CORPORATION

DEFINITION OF SYMBOLS

A	 Cross-section area, in.2

c	 Real-gas A/A* correction factor, dimensionless

C2	Axial balance readout, counts

CD	Discharge coefficient, dimensionless

CT	Static thrust coefficient, dimensionless

F	 Stream thrust, lb.

G	 RPa'_,gas stream thrust correction factor, dimensionless

H 	 Net axial thrust, 11,s.

H2	Axial balance force, lbs.	 1/2
K	 Critical weight flow parameter, °R /sec.

K 2	Balance force calibration factor, lbs/count

M	 Mach number, dimensionless

m	 Mass flow rate, slugs/second

P	 Pressure, static unless otherwise specified by subscript, psia

AP	 Static pressure difference across seal, psi

q	 Dynamic pressure, psia

RN	Reynolds number, dimensionless

T	 Temperature, °R

v	 Velocity, ft/sec

W	 Weight flow rate, lb/sec

W 	 Dead-weight calibration load, lbs

y	 Distance from wall

y	 Ratio of specific heats, dimensionless

d	 Boundary layer thickness

0	 Incremental quantity

A	 Pressure ratio, P t/Pa , dimensionless

e	 Meridian angle measured clockwise looking upstream, degrees

P	 Density, slugs/ft3

E	 Summation

iv
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Subscripts:

a	 Ambient

e	 Exit

i	 Ideal

t	 Total conditions

w	 Wall

x	 Axial

w	 Freestream

1,2,...	 See Figure 7

Superscripts:

*	 Sonic condition

v
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1.0 INTRODUCTION

This experimental study was conducted to evaluate static per

-fcrmance characteristics, and obtain preliminary acoustic data,

for several compound-flow exhaust nozzles for the NASA Quiet,

Clean General Aviation Turbofan engine. Model aerodynamic lines

and test conditions were specified by AiResearch. The model

(except for the lobed mixers) was designed and fabricated by

F1uiDyne Engineering Corporation. The te !.ts were conducted at

the F1uiDyne Medicine Lake Aerodynamic Laboratory in a two-

temperature-flow static thrust stand.

The basic test program was defined by AiResearch test plan,

Report No. 21-2603-A, prepared by Walter L. Blackmore and Craig

E. Thompson. Technical liaison for A kesearch was performed by

Craig Thompson, who witnessed most of the tests. The acoustic

measurements were made by AiResearch personnel (Walter M. Gipson,

Al G. Tolman and Robert Hagler) for analysis by AiResearch.

This report 3escribes the test facility, test model, data

acquisition and analysis procedures, and presents the test results.

Test conditions and major test results are tabulated in Figure 9 and

are plotted in Figures 10 - 17. Detailed data and calculations are

contained in a separate Data Appendix.

- 1 -
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2.0 FACILITY DESCRIPTION

The tests were performed in Channel 11 at FluiDyne's Medicine

Lake Aerodynamics Laboratory. Channel 11 is a two-temperature flow

static thrust stand used to determine performance of exhaust nozzles

in which the two exhaust flows are at different temperatures. Nozzle

thrust is determined from force measurement with strain gage force

balances. The general arrangement of Channel 11 is shown in Figure 1.

Phet:ographs of test model installations are presented in Figure 6.

The airflows for both the cold and hot passages of a test

nozzle are obtained from the facility high-pressure dry air storage

system. Air for the cold passage is throttled, metered through a

long-radius ASME nozzle, ducted to the cold passage of the test

nozzle, and finally exhausted to atmosphere. Air for the hot passage

is throttled, passed through a regenerative storage heater, mixed

with unheated bypass flow to achieve a desired temperature, metered

through a long-radius ASME nozzle, ducted to the hot passage of the

test nozzle, and finally exhausted to atmosphere.

The air heater used for the hot flow contains alumina pebbles

which are preheated to approximately 1250 OFwith a combustion heater.

The heater capacity is nominally 40 lbs./sec. at 12000F.

Tne model assembly is supported by a 3-component strain-gage

force balance and is isolated from the facility piping by two elastic

seals; see schematic in Figure 7. Calibration of tha balance and

seals is described in Section 4.6.

The ASME meter at Station 1 is water-cooled to protect the

elastic seal from thermal effects. Since the cooling water is

confined to the upstream (i.e., non-metric) hardware only, no

tare forces are introduced by the water supply lines.

- 2 -
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Facility instrumentation is provided to calculate mass flow rates

at Stations 1 and 3, and to calculate the exit thrust produced by the

test nozz.e; details are described in Section 4.0. The data were re-

corded witn Polaroid cameras and digital printers.

- 3 -
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3.0 MODEL DESCRIPTION

The test model was designed by FluiDyne using aerodynamic

lines and instrumentation locations specified by AiResearch. The

model was fabricated by F1uiDyne, except for the lobed mixers

which were furnished by AiResearch. The model attached to existing

model-to-facility adapters. Figure 2 shows the model assembly,

Figure 3 defines the test configurations, and Figure 4 shows the

adapteru. Photographs of model assemblies are shown in Figure 6.

3.1	 Model Adapters

The test models attached to common adapting hardware which

supplied separately-metered flows to the fan and core nozzles. The

fan air flow was nominally at ambient temperature for all tests. The

core air flow was nominally at ambient temperature for the "cold"

tests, but was heated to approximately 700-900 OF for the "hot" tests.

The main support member for the adapters is the "spider,"

Item 4 in Figure 4. Adapters for the core passage consisted of an

insulated duct, a choke plate, two screens, a centerbody which supported

the interchangeable plugs, and a common, core shroud adapter which

supported the interchangeable core shrouds (mixers). Charging station

instrur.entation in the core passage included four 5-tube area-

weighted total pressure ( P t 5 ) rakes, eight area--weighted total tempera-

ture probes, one thermocouple for controlling the flow temperature, and

static pressure taps on the inner and outer walls.

The adapters for the anni.ilar fan passage included a choke plate,

two screens, a bellmouth contraction and fan shroud adapter, and six

instrumentation plugs. Charging static instrumentation in the fan

passage included four 12-tube area-weighted P t14 rakes, two 4-probe

Tt14 thermocouple rakes, one thermocouple for control purposes, and

four static taps on the inner and outer walls.

- 4 -
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The single control thermocouples at the two charging stations

were used to set the desired temperature ratio, Tt5.2 /Tt14' Outputs

from these two thermocouples were amplified, divided and displayed

on a digital panel meter to provide the facility valve operators

with a visual indication of the actual temperature ratio.

3.2 Model Components

Reduced drawings of model components are presented in

Figures 5a-k. The two interchangeable plugs (Figures 5a-b) had

identical contours except for the addition of a straight section

in Plug N2. Plug kl contained two removable 6-probe rakes (Pt5.2)

used to determine pressure drop between Stations 5 and 5.2. Both

plugs contained 12 static pressure taps.

Interchangeable mixers attached to the common Core Cowl,

Figure 5c. This cowl contained two internal static pressure taps

(at Station 5.2) and two o-ring connections for base pressure taps on

the mixers. The free-mixer (splitter) and lobed mixers are shown in

Figures 5d-g. The splitter and Mixer A ended at engine Station 56,

while Mixers C and D were 4-inches (full-scale) longer. The short

mixers were used with Plug N1 and the long mixers with Plug #2.

The Forward Fan Duct and Aft Fan Duct, Figures 5h-i, were used

with all dual-flow configurations. The Aft Fan Ducat contained ten

static pressure taps. For Configurations III, IV and VI, a 4-inch

(full-scale) spacer was ii:serted to move the Aft Fan Duct downstream

as shown in Figures 2 and 6c. The model assembly was completed by

addition of a Duct Exit (Figures 5j or 5k). The Duct Exit contained

two base taps and two internal static taps near the exit plane.

- 5 -
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4.0 DATA ANALYSIS PROCEDURES

The following subsections describe the data analysis procedures

used in the present test program. Station notations are defined in

Figure 7. Computer programs written in BASIC language are included

in the Appendix.

4.1	 Flow Rates

The mass flow rates through the test nozzles were determined

using choked ASME long-radius metering nozzles. The core nozzle

flow rate was calculated at Station 1 (see Figure 7) and the fan

nozzle flow rate was calculated at Station 3, using the following

equations.

C	 P
K 1 D1A1 tl

W 1 = W 5.2	 r--
,̀II t 1

W	 _	 K3 
C D 

3 
A 3 P t3

14

Jt—T

The critical flow factor, K, was calculated as a ;unction of

total pressure and total temperature.

K=0.5280 + a T  + b T t 2 + c T t 3 + 0.186 x 10 -4 x Pt x e-* 0067(T t- 
500)

where:	 a = 0.1654 x 10-4

b = -3.2119 x 10-7

c = 0.6008 x 10-11

T  is in OR and P t is in psia.

- 6 -
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This equation was obtained by curve-fitting tabulated values in

Reference 1; the curve-fit is accurate to within + 0.030 for

0 < Pt < 30 atmospheres and 460 < T  < 700 0R, and is accurate to

within +0.10 for 0 < Pt < 40 atmospheres and 460 < T  < 18000R.

C D 3 was calculated using a semi-empirical equation

-0.2
C D 3 = 1 -0.184 RN 

and varied from 0.990 to 0.993 for the present tests.

C D 1 was calculated from a similar equation, modified to

account for a thermal boundary layer. This thermal boundary layer

results from water-cooling of the Station 1 meter.

-0.2
CD1 = 1 - (0.184 RN 1	 ) (1.574 - 0.574 Ttl/TW)

The above equation was derived assuming constant static pressure in

the boundary layer, a 1/7 power velocity profile, thermal boundary

layer thickness equal to velocity boundary layer thickness, and a

density distribution in the boundary layer defined by

l	 1/
	

1 
1/7

P
T 

00	 00

P.	 W	 TW

TW , the wall temperature at the nozzle throat, was estimated from

heat-balance calculations of heat transfer from the air str •..am to

the cooling water. T  values calculated for the present tests varied

from 99 0 to 1690F.	 R N 1 was calculated u.;in5 t) t-r n tor—erature,

(TW + Tt 1 )/2. CD 1 , calculated using the above equation, varied from

0.990 to 0.998 for the present tests. Given sufficient wall cooling,

C D I may exceed unity (Reference 2).

- 7 -
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The above equation for C D 
1 
is believed to be correct within

0.0^25, on the basis of results from facility demonstration tests.

These demonstration tests included test series with either a 2.5-inch

or a 4-inch diameter ASME nozzle located downstream of the water-

cooled Station 1 meter. The downstream nozzle was essentially at

adiabatic conditions (thin-wall construction, backside insulated).

Flow rates calculated at Station 1 (using the above 
C D 

1 
equati%n)

agreed w?.thin + 0.259 with flow rates calculated at the downstream

nozzle (using adiabatic wall C D ), thereby indicating tha adequacy

of the 
C
D i equation.

A 3 , the geometric throat area of the Station 3 meter, was

11.0358 in 2 . A1 , the geometric throat area of the Station 1 meter,

was calculated assuming thermal expansion from 70 0F to T« . The

largest val''ae of A l calculated for the present tests was 3.8202 in2,

representi;;g a thermal expansion area change of 0.189 from the

nominal area of 3.8134 in
2

.

t1 and "t 3 were measured with Statham differential pressure

transducers. 
T 

t 1 
and 

T 
t 
3 
were measured with shielded chromel/alumel

thermocouples and recorded on the facility Vidar system (analog to

digital converter, printer).

Calculated flow rates (lbm/sec) for the present tests were is

the ranqes

1 < w1 < 16	 8 < w3 < 36.

4.2	 Discharge Coefficients and Effective Throat Areas

Discharge coeffi.:ient is defined as the ratio of actual flow

rate through a nozzle to the ideal isentropic flow rate at the over-

all nozzle pressure ratio. Core nozzle pressure ratio is defined as

X 5.2	
Pt5.2/Pa' and fan nozzle pressure ratio is X 14 = Pt 14 /Pa -

For the present tests texhausting to atmosphere), P a equals

barometric pressure.

- 8 -
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C

	

CD 5.2	 W1/W5.2 i and

where

	

W5.2. =	 K 5.2 A 5.2 t5.2
i

^7t_5.2

D14 _ W3/W14i

(A*/A) 5.2	 K A Pt(A*/A)14and W14 = 14 14 14
1	

^T^
Y	 `14

K 
5. 2
 

and K	 were evaluated using a previous equation, as

functions	
5.2

of Pt 14, T  5.2 and Pt 14' T  14' 	 ^
Pty.2 was determined by

.easuriny P t y and applying a correction for the pressure drop between

Stations 5 and 5.2 as described in Section 5.0. 
P 

t 
5 
and P t 14 were

measured with mercury manometers and were defined as the averages from

area-weighted probe:; (20 tubes for P t 5 , 48 tubes for P t 14 ). Tt 14 was

measured with 8 area-weighted thermocouples. Tt 5.2 was defined as
T-

` 5 (measured with 8 area-weighted thermocouples) minus an estimated

AT due to heat transfer to the inner core cowl between Stations 5 and

5.2. The calculated AT values varied between 
0  anc? 160F.

For the present tests, effective throat areas 
CD5.2A5.2 

and

CD14A14 were calculated instead of discharge coefficients

CD 5 2 
anti 

CD14' 
In addition, an overall nozzle discharge coefficient

was calculated as 
C 
D 8	 (CD5.2A5.2 i 

CD14A14)/A8, where A 8 is the

geometric area of the duct exit. The inspected area for both Exits

#1 and #2 was A 8 = 49.747 in2.

A*/A, the isentropic area ratio, is used to correct the ideal

fiow rate when the nozzle !_s unchoked. A*/A for the fan nozzle was

caLculatec'. using equations valid for y = 1.4, obtai%ed from Reference 3.

A*/A = 3.86393a -0.71429
	 1 - X -0.28571 for a < 1.8929

and

A*/A = 1 for a > 1.8929.

- 9 -
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A*/A for the core nozzle was obtained by correcting the y - 1.4 value

for "real gas effects," to account for y 5.2 being significantly less

than 1.4. The correction was derived by curve-fitting tabulated

values from Reference 4; no corrections are indicated for T t < 9000R.

First, the critical pressure ratio was expressed as a function of

total temperature:

l :^a* = 9.667 x 10 -6 x Tt ( 0R) + 0.5196

if a	 ?*, then A*/A = 1. 	 If a " a*	 and 900 < T t < 12600R,

c = 1 + (	 -*)	 5.728 x 10 
5 

(T t - 900).

if a < l* and 1.260 < T t :	 18000R,

c	 1	 ( n - 1 * )	 [2.615 x 10
-5 (Tt - 1260) + 0.020621]

Finally,

A*/A = c x	 [(A*/A)	 at Y - 1.4)^ .

For the present tests, c (denoted c* on computer output sheets)

varied from 1.000 to 1.0063.

4.3	 Thrust Measurement

The net static axial thrust of an exhaust nozzle is defined

as the axial exit momentum of the exhaust flow, plus the excess of

exit pressure over ambient pressure times the exit area.

	

x = mvP	+ (Pe - Pa ) Ae

	

x	 x

The net static thrust of an exhaust nozzle model was determined in

the present test program by applying the momentum equation to the

control volume shown in Figure 7. The analysis of :axial forces

applied to the control volume includes entering stream thrusts

- 10 -
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(F l and F 3 ), a balance

axial exit stream thru

as used here, includes

H x = F l + F 3 + P2 (A2

force (it 2 ), various pressure-area terms and the

st, (H x +- paAex )• The axial balance force, H2,

seal tare forces. Summing axial forces,

- A1 ) + P 4 (A4 - A 3 ) - Pa (A,) + A4 ) - H2.

The strear. thrust at Station 3 is the exit stream thrust of

a choked long-raius ASMF, nozzle, -+nd was calculated as:

I1 1 = G 3 (1 + 1.4 t D l t T 3 ) .52828	
Pt3A3,

Use of 1 = 1.4 and P*/P t = .52828 in the above equation imply an

ideal. yas. 1'he i'actor G, derived from tabulated values in References

1 and 4, corrects the stream thrust from that of an ideal gas to

that of a real gas.

If '1, t , 560 08, G = 1.00012 + 6.8338 x 10 -b x P t (psia) .

It '1' t 	9)60'12, G = 1.0044 - (4.196 - .0059 P t ) (T t + 460) x 10-6.

t D 1 has already been discussed; t T 3 was calculated in an analogous

manner,

tT3 = 1 - 0.109 R
N; -0.2	 .

This equation is a semi-empir.ical expression of the thrust coefficient

of an ASME nozzle at a pressure ratio (if X- 1 0,929 (correspondinq

to 1'*,j f' t, _ .52828) .	 h'c>r the present tests, G 3 varied from 1.000

to 1.0010, and 
`T3 vat°iced from 0.994 to 0.996.

The stream thrust at Station 1 was calculated as:

F 1 = G 1 (1 + 1.4 GD I C T 1 ) .52828 , tl"1

Each variabl- in this equation has been previously described, except

CT 1 . 0,11 1 ''is calculated in a similar manner as CT 3 , but was modified

to account for the thermal boundary layer described in the discussion:

- 11 -
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of 
C
D 1 in Section 4.1:

-0.2	 ,
^T 1 = 1 - (0.109 RN1
	

) (0.828 t 0.172 rtl /TW).

'I'he above equation was derived using the same assumptions as in the

derivation of C D 1 . CT 1 for the present tests varied from 0.991 to

0.996.

Static, pressures p 2 and p 4 were measured with Statham differen-

ti.a1 pressure transducers. Ambient pressure (p a ) was measured on a

Mass mercury manometer (barometer). A 2 and A 4 , the geometric

reference areas for the seals, were 7.0686 and 12.5664 in 2 , respectively.

4.4	 'f'hrust Coefficient

They static thrust coefficient of an exhaust nozzle is defined

as the ratio of the measured nozzle net thrust, to the ideal thrust

of the actual mass flow when expanded isentropically from P t to Pa.

_	 Ii _

C^'r	 m V.i

For the dual-flew tests, the ideal thrust was calculated as the

sum of the fan nozzle ideal thrust and the core nozzle ideal thrust:

H

`T	 m5.2vi5.2 + m14vi14

I,leal thrust was calculated using a dimensionless ideal

thrust function, m i v ` /P tA*, which is a function of both X and Y .

111 5.2 v i5.2 = (A*/A) 5.2 t,D 5.2 A 5.2 Pt 5.2 (mivi/PtA*)5.2

m 14 v i 1.4	 = (A*/A)14 CD .14 A 14 Pt 14 (mivi/PtA*)14

- 1.2 -
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where

(m i v i ,` p A*) _ }	 Y2	
-11+1

y	 j 1-	 Y
+	 +

1.81162	 1 - 1 -0.28571	 for	 1.4.

Fol the present tests, 1 1t was taken to be 1.400.	 however, 1, ^i^ 1.4

and, therefore, (III i v i , l'tA") 5.2 obtained from the above equatioi. was

corrected to account or "real klas eftects" by multiplying by the ratio

(m, v	 1' A") for re,11 clasa	 i	 t

(m i v i '1' t A") for )	 1 .4

'this ratio was calculated from tabulated values in Reforence 4; for

the present rankle of test conditions this tactor was obtained from I

curve-tit expression:

.9457 - 5. 81 x 10 -6 x ( '1` t , "R - 1000) + 1.25 x 1.0 -3 x (1	 - 1)

and varied between .9913 and .9962.

4 . 5	 Pressure and 'Femperat ure t)at I

i'res5ure insti , ,imontation for tacility pressures and charclinq

station pressures were described previously. All othar pressures

in the model were 111e,1sured usinci nnlltiple-tube mercury manometers.
Model pressure data were reduced to absolute pressures (psia).

'Fhe results are tabulated on computer output sheets, contained in

the Appendix.

Facility and charciin(i station temperature data were obtained

us.inkl shielded chromel./alumel thermocouples, and were recorded on

the facility V.idar system. Temperatures were ex p ressed in c'F or
0
R, or both.

- 1 1 -
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4.6	 l'orce Balance Calibration

'Phe force balance calibration determined the output character-

istics of both the force balance flexure and the two elastic seals

between the metric model assembly and the non-metric facility

structure. The elastic seals produce a small tare force, largely

due to radial seal deflections necessary to support the static pres-

sure differential across the seal. The seal and balance assembly are

calibrated under simulated operatinq conditions of loads and seal

differential pressures.

The balance assembly was first calibrated with the internal

seals unpressurized. Known loads (dead-weiqht) were applied to

obtain .i balAnue calibration cok tticient, K 2 = H 2 /C 2 , where H 2 is
the axial load and C 2 is the balance output.

c',alibration of the elastic seals was accomplished as follows.

Blank -ctf plates were installed downstream of the seals, and the
seals wtI re pressurized to selected values of pressure differentials,

AP. This pressure loading produces a downstream force on the balance.

Additional axial loads, W x , were then applied to increase or decrease
the net load to simulate test conditions of axial load and AP. Summing

farces, the axial balance force (which is calculated from the balance

output) must equal the applied load plus the pressure-area forces at

the twc seals, i.e.,

If  = W  + AP  (A ` + AA')) + AP  (A 4 a• AA4)

from which the apparent change in seal area (AA) may be calculated.

AA was then curve-fit as a function of H 2 and AP, and included as a
correction term in the balance force calculation. When used to reduce

test data, AA for each seal was defined by H 2 and the AP at each
seal.

- 14 -



ftuoDYNE ENGINEERING CORPORATION

4.7	 Supplementary Calculations

Supplementary calculations were made to present the test results
in additional nondimensional forms. The results are contained in the
Appendix, and include the following items.

Flow rates corrected to standard conditions:

	

1 5.2	 = T t 5.2 /518.69

	

5.2	 ^	
1) 

t 5.2 /14.696

I	
T	 /518.6911 

14	 t 14

6 
14 ^ P t 14 /14.696

W 5.2 corrected ^

W1.1 corrected

W- - , o - -

ki 5. 2

W 
14	 14

6 14

Core nozzle flow coefficient referenced to mixer base pressure (taps

#27, 37) and fan nozzle flow coefficient referenced to match plane

static pressure (taps #151, 152):

Cl^ (J I	 W 5.2 /W 6.	 and
	

CD (J2) = 
W 14 

/W 
16,

	

1	 1

These coefficients are similar to C D 5.2 
and C D 

14 
defiaed earlier,

except that ideal flows were evaluated assuminq isentropic expansion

from P 
t 

to the appropriate static pressures, rather than from P 
t 

to

1')
a
 . Reforence areas used were:

2 2
A 
6'	

in A 16	 in

Splitter 25.502 59.798

Mixer A 25.422 58.781

Mixer C 26.168 58.035

Mixer D 26.162 58.037

- 15 -
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£ • ..ic nozzle flow coefficient:

CD (E)	 = (W5.2 + W14)/WB i

where W8 i was evaluated using mass-flow-weighted averages (of P 5.?,
pt14 

and Tt 5.2' T t 14 ), isentropic expansion to exit base pressure
(taps 4161, 1.62), and A8 = 49.747 in2.

	

4.8	 Exit Survey Data

Pressure and temperature surveys at the nozzle exit were obtained

using a survey rake, rake support, and drive mechanism furnished by

AiResearch. The survey hardware is shown in place at the nozzle exit

in Figure 6d.

The survey rake assembly was su pported from the floor by an

adjustable platform which provided accurate locating of the rake

relative to the nozzle exit. The rake assembly was non-metric, i.e.,

did not touch the metric model.

Survey data were obtained with the rake located in 3 o increments

over a 30 0 arc. Measurements consisted of 15 temperatures, 6 total

pressures, centerline static pressure, and 2 wall static pressures

(taps #161, 162). Temperatures were recorded with a digital printer,

and pressures were recorded by photographing mercury manometers.

The data were reduced as specified, and transmitted to AiResearch

for plotting and analysis. Computer program and output sheets are

contained in the Appendix.

	

4.9	 Acoustic Data

Acoustic measurements

tests using microphones and

operated by AiResearch. An

AiResearch. Arrangement of

Figures 6d and 8.

were obtained during 12 dual-flow

tape recording equipment supplied and

alysis of the tapes was performed by

the microphones is illustrated in

- 16 -
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5.0 PRESENTATION OF RESULTS

'Pest conditions and major test results are tabulated in

Figure 9 and are plotted in Figures 10 - 17. Detailed data and

calculations, including tabulated static pressuro distributions and

exit survey results, are contained in a separate Data Appendix.

The tabulation in Figure 9 includes: configuration number, run

number and type of data obtained, actual values of the independent

variables 
(X 5.2' \

14' Tt5.2/Tt14), and major test results WTI C D A

for the core and fan passages, W14/W5.2).

The first test series (Runs 1.0 - 6.0) was made to determine

the total pressure loss between Stations 5 and 5.2. The results

are plotted in Figure 10 as E t 5 2 //P t 5 versus M2 5 , where M 5 is

the iscntropi.c floe: Mach number (Reference ?) indicated by the static

to total pressure ratio at Station 5. The data points fall close to

a straight line, since the pressure loss in the passage is nearly

proportional to the dynamic pressure, q = .7pM2 . After these initial

tests, the pressure rakes at Station 5.2 were removed; Pt5.2 for all

remaininq tests was calculated as 
P 
t 5 

(1-.02 M25).

Tests with core-flow-only were made with the four core nozzle

configurations shown in Figure 6b. These tests determined thrust

coefficients, effective throat areas, and static pressure distribu-

tions of the core nozzles when exhausting to atmosphere (i.e., with-

out the restraints imposed by the fan duct and fan flow). Thrust

coefficients and effective throat areas from the core-only tests

are plotted in Figures lla-b.

Dual-flow tests were made with each of the four configurations

shown in Figi:ie 6a and with two additional configurations (V, VI)

obtained by using the short duct exit with Configuration II. Each

dual-flow configuration was tested both with cold-flow and hot-flow

- 17 -
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(Tt 5.2 /it 14 ' 
1.0 and 2.5). Figure 12 presents thrust coefficients

for all six configurations. With cold -flow, the highest CT level was

obtained with the splitter (Configuration I). Increasing temperature

ratio with Configuration I produced a slight CT increase. Increasing

temperature ratio with the lobed mixers produced substantial CT

increases. These increases are dependent on the extent of temperature

mixing (Reference 5).

Thrust measurements were also obtained for all six dual-flow

configurations during exit survey tests. C T values from these tests

are tabulated in Fiqure 9, and are identified by the note "with survey

data," but have not been plotted due to the apparent interference of

the rake on the thrust measurement. C T values with the rake are higher

than those without (the largest difference is .0056, the average is

.004).

Another indication of rake interference is the effect of the rake

on offectivE_ throat areas. The combined effective throat area,

CD5.2 A5.2 + CD14A14' de,^reased 0.88 (average from 
six pairs of data)

due to the presence of the rake.

Configurations I and II were selected for a larger mapping of

nozzle performance. Results are presented in Figures 13 and 14, as

CT versus \ 5,2 with lines of constant X14'

Effective throat areas for the core and fan passages are plotted

in Figures 15-17. Figure 15 shows results for all six configurations,

and Figures 16 and 17 show the larger mapping for the two selected

configurations.

- 18 -
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FLUIDYNK ENGINEERING CORPORATION

Duct
Splinter or Spacer

Config. Mixer Plug (17172) Exit

I Splitter (SKP17162) N1 (SKP17160) Long (SKP17167)

II Mixer A (17163) #1 (17160) Long (17167)

III Mixer C (17168) M2 (17169) Yes Long (17167)

IV Mixer D (17170) N2 (17169 Yes Lang (17167)

V Mixer A (17163) M1 (17160) Short (17166)

VI Mixer A (17163) M1 (17160) Yes Short (17166)

FIGURE 3. DEFINITION OF TEST CONFIGURATIONS
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two story concrete block wall	 II

eNllor-
exhaust deflector

(culvert)

concrete slab

75°
70° 60°

40°

30°
i

microphone
locations

corrugated
metal
building

fiberglass
batt

test cell

nozzlenozzle
location

exhaust CL ---

FIGURE B. ACOUSTIC TEST SETUP
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